The authors of "Exploiting Epistemic Uncertainty of Anatomy Segmentation for Anomaly Detection in Retinal OCT" which appeared in the January 2020 issue of this journal [1] would like to provide an updated Fig. 3 because there was an error in the published version. The output of the last convolutional layers says "2" in the number of channels but it should be "11" (10 retinal layer and the background).
View Article and Find Full Text PDFDiagnosis and treatment guidance are aided by detecting relevant biomarkers in medical images. Although supervised deep learning can perform accurate segmentation of pathological areas, it is limited by requiring a priori definitions of these regions, large-scale annotations, and a representative patient cohort in the training set. In contrast, anomaly detection is not limited to specific definitions of pathologies and allows for training on healthy samples without annotation.
View Article and Find Full Text PDFPurpose: To characterize retinal morphology differences among different types of choroidal neovascularization and visual function changes at the onset of exudative age-related macular degeneration.
Methods: In a post hoc analysis of a prospective clinical study, 1,097 fellow eyes from subjects with choroidal neovascularization in the study eye enrolled in the HARBOR trial were evaluated. The onset of exudation was diagnosed on monthly optical coherence tomography by two masked graders.
Retinal swelling due to the accumulation of fluid is associated with the most vision-threatening retinal diseases. Optical coherence tomography (OCT) is the current standard of care in assessing the presence and quantity of retinal fluid and image-guided treatment management. Deep learning methods have made their impact across medical imaging, and many retinal OCT analysis methods have been proposed.
View Article and Find Full Text PDFThe identification and quantification of markers in medical images is critical for diagnosis, prognosis, and disease management. Supervised machine learning enables the detection and exploitation of findings that are known a priori after annotation of training examples by experts. However, supervision does not scale well, due to the amount of necessary training examples, and the limitation of the marker vocabulary to known entities.
View Article and Find Full Text PDFPurpose: While millions of individuals show early age-related macular degeneration (AMD) signs, yet have excellent vision, the risk of progression to advanced AMD with legal blindness is highly variable. We suggest means of artificial intelligence to individually predict AMD progression.
Methods: In eyes with intermediate AMD, progression to the neovascular type with choroidal neovascularization (CNV) or the dry type with geographic atrophy (GA) was diagnosed based on standardized monthly optical coherence tomography (OCT) images by independent graders.
Purpose: To identify the spatial distribution of exudative features of choroidal neovascularization in neovascular age-related macular degeneration (nAMD) based on the localization of intraretinal cystoid fluid (IRC), subretinal fluid (SRF), and pigment-epithelial detachment (PED).
Methods: This retrospective cross-sectional study included spectral-domain optical coherence tomography volume scans (6 × 6 mm) of 1341 patients with treatment-naïve nAMD. IRC, SRF, and PED were detected on a per-voxel basis using fully automated segmentation algorithms.