Publications by authors named "Sophie Kellaway"

AML is characterized by mutations in genes associated with growth regulation such as internal tandem duplications (ITD) in the receptor kinase FLT3. Inhibitors targeting FLT3 (FLT3i) are being used to treat patients with FLT3-ITD+ but most relapse and become resistant. To elucidate the resistance mechanism, we compared the gene regulatory networks (GRNs) of leukemic cells from patients before and after relapse, which revealed that the GRNs of drug-responsive patients were altered by rewiring their AP-1-RUNX1 axis.

View Article and Find Full Text PDF
Article Synopsis
  • Acute Myeloid Leukemia (AML) results from various mutations that disrupt normal growth and differentiation of myeloid cells, leading to a dangerous increase in immature blast cells.
  • Current treatments mainly involve chemotherapy, but they often fail due to the presence of dormant leukemic stem cells (LSCs) that can reactivate and cause relapse.
  • This study focuses on the t(8;21) subtype of AML, revealing that LSCs in this model activate specific signaling pathways (VEGF and IL-5) that help them exit dormancy and maintain self-renewal, contributing to treatment resistance.
View Article and Find Full Text PDF
Article Synopsis
  • Acute myeloid leukemia (AML) is a complex disease linked to various mutations, each creating its own gene regulatory network (GRN) with interacting transcription factors.
  • Researchers tested the idea that important regulators for maintaining AML can be found in highly interconnected nodes of these GRNs, focusing on FLT3-ITD-mutated AML as their model.
  • Their findings indicate that specific regulatory modules are essential for AML growth, and the transcription factor RUNX1 is critical, as its removal disrupts the GRN, leading to cell death.
View Article and Find Full Text PDF

AML is a heterogenous disease caused by different mutations. We have previously shown that each mutational sub-type develops its specific gene regulatory network (GRN) with transcription factors interacting with multiple gene modules, many of which are transcription factor genes themselves. Here we hypothesized that highly connected nodes within such networks comprise crucial regulators of AML maintenance.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy caused by mutations in genes encoding transcriptional and epigenetic regulators together with signaling genes. It is characterized by a disturbance of differentiation and abnormal proliferation of hematopoietic progenitors. We have previously shown that each AML subtype establishes its own core gene regulatory network (GRN), consisting of transcription factors binding to their target genes and imposing a specific gene expression pattern that is required for AML maintenance.

View Article and Find Full Text PDF
Article Synopsis
  • The MLL/AF4 fusion gene is linked to a high-risk form of pro-B acute lymphoblastic leukemia, where relapses may switch the cancer type to acute myeloid leukemia, complicating treatment.
  • Research shows that during these relapses, the cancer cells retain specific genetic characteristics from the original leukemia and can develop from different stages of cell development.
  • Changes in chromatin accessibility and gene regulation, particularly involving the CHD4 gene, contribute to this lineage switching, suggesting that the cancer's development is driven by faulty epigenetic control.
View Article and Find Full Text PDF

The transcription factor RUNX1 is essential for correct hematopoietic development; in its absence in the germ line, blood stem cells are not formed. RUNX1 orchestrates dramatic changes in the chromatin landscape at the onset of stem cell formation, which set the stage for both stem self-renewal and further differentiation. However, once blood stem cells are formed, the mutation of the RUNX1 gene is not lethal but can lead to various hematopoietic defects and a predisposition to cancer.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers conducted a detailed analysis to find new drugs for treating acute myeloid leukemia (AML) caused by fusion genes, specifically focusing on AML1-ETO (AE) driven AML.
  • They discovered that the fusion protein AE disrupts phospholipase C (PLC) signaling, with PLCgamma 1 (PLCG1) being a vital target that affects the leukemia's self-renewal and growth.
  • Inactivating PLCG1 in both mouse and human models led to reduced leukemia maintenance, while not affecting normal blood cell functions, suggesting that targeting the PLCG1 pathway could be a promising therapeutic strategy for AML1-ETO+ leukemia.
View Article and Find Full Text PDF

Mutations of the haematopoietic master regulator RUNX1 are associated with acute myeloid leukaemia, familial platelet disorder and other haematological malignancies whose phenotypes and prognoses depend upon the class of the RUNX1 mutation. The biochemical behaviour of these oncoproteins and their ability to cause unique diseases has been well studied, but the genomic basis of their differential action is unknown. To address this question we compared integrated phenotypic, transcriptomic, and genomic data from cells expressing four types of RUNX1 oncoproteins in an inducible fashion during blood development from embryonic stem cells.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a heterogenous disease with multiple sub-types which are defined by different somatic mutations that cause blood cell differentiation to go astray. Mutations occur in genes encoding members of the cellular machinery controlling transcription and chromatin structure, including transcription factors, chromatin modifiers, DNA-methyltransferases, but also signaling molecules that activate inducible transcription factors controlling gene expression and cell growth. Mutant cells in AML patients are unable to differentiate and adopt new identities that are shaped by the original driver mutation and by rewiring their gene regulatory networks into regulatory phenotypes with enhanced fitness.

View Article and Find Full Text PDF

Hematological malignancies are characterised by a block in differentiation, which in many cases is caused by recurrent mutations affecting the activity of hematopoietic transcription factors. RUNX1-EVI1 is a fusion protein formed by the t(3;21) translocation linking two transcription factors required for normal hematopoiesis. RUNX1-EVI1 expression is found in myelodysplastic syndrome, secondary acute myeloid leukemia, and blast crisis of chronic myeloid leukemia; with clinical outcomes being worse than in patients with RUNX1-ETO, RUNX1 or EVI1 mutations alone.

View Article and Find Full Text PDF

Congenital hyperinsulinism (CHI) is characterised by inappropriate insulin secretion causing profound hypoglycaemia and brain damage if inadequately controlled. Pancreatic tissue isolated from patients with diffuse CHI shows abnormal proliferation rates, the mechanisms of which are not fully resolved. Understanding cell proliferation in CHI may lead to new therapeutic options, alongside opportunities to manipulate β-cell mass in patients with diabetes.

View Article and Find Full Text PDF