Driven by the increasing concern about the risk of diclofenac (DCF) residues as water pollutants in the aqueous environment and the growing need for its trace determination, a simple but sensitive electrochemical aptasensor for the trace detection of DCF was developed. To construct the aptasensor, the amine-terminated DCF aptamer was covalently immobilized on the surface of the carboxylic acid-functionalized multi-walled carbon nanotube (f-MWCNT)-modified glassy carbon electrode (GCE) through EDC/NHS chemistry. The f-MWCNTs provide a reliable matrix for aptamer immobilization with high grafting density, while the aptamer serves as a biorecognition probe for DCF.
View Article and Find Full Text PDFThe plasmid-mediated quinolone resistance (PMQR) genes have been shown to promote high-level bacterial resistance to fluoroquinolone antibiotics, potentially leading to clinical treatment failures. In , sub-minimum inhibitory concentrations (sub-MICs) of the widely used fluoroquinolones are known to induce the SOS response. Interestingly, the expression of several PMQR genes is controlled by the SOS master regulator, LexA.
View Article and Find Full Text PDFThis review is an update of two previous ones focusing on the limit of detection of electrochemical nucleic acid biosensors allowing direct detection of nucleic acid target (miRNA, mRNA, DNA) after hybridization event. A classification founded on the nature of the electrochemical transduction pathway is established. It provides an overall picture of the detection limit evolution of the various sensor architectures developed during the last three decades and a critical report of recent strategies.
View Article and Find Full Text PDFWaste printed circuit boards are a major source of strategic materials such as platinum group metals since they are used for the fabrication of technological devices, such as hard drive discs, capacitors, and diodes. Because of the high cost of platinum, palladium, and gold (> 25 k€/kg), an economic and environmental challenge is their recycling from printed circuit boards that represent around 2% weight of electronic equipment. Hydrometallurgical treatments allow the recovery of these metals in solution, with a high recovery rate for a leaching liquor made of thiourea in hydrochloric acid.
View Article and Find Full Text PDFS-nitrosothiols (RSNOs) are very important biomolecules that play crucial roles in many physiological and physiopathological processes. They act as NO-donors and are candidates for future medicines. Their identification and quantitation are therefore important for biomedical applications.
View Article and Find Full Text PDFThe simultaneous electrochemical quantification of oxidized (GSSG) and reduced glutathione (GSH), biomarkers of oxidative stress, is demonstrated in biological fluids. The detection was accomplished by the development of a modified carbon electrode and was applied to the analysis of biological fluids of model organisms under oxidative stress caused by lead intoxication. Nanocomposite molecular material based on cobalt phthalocyanine (CoPc) and multiwalled carbon nanotubes functionalized with carboxyl groups (MWCNT) was developed to modify glassy carbon electrodes (GCE) for the detection of reduced and oxidized glutathione.
View Article and Find Full Text PDFThere is a great demand for integrating sample treatment into μTASs. In this context, we developed a new sol-gel phase for extraction of trace compounds in complex matrices. For this purpose, the incorporation of aptamers in silica-based gel within PDMS/glass microfluidic channels was performed for the first time by a one-step sol-gel process.
View Article and Find Full Text PDFA series of [Re(N^N)(CO)(X)] (N^N = diimine and X = halide) complexes based on 4-(2-pyridyl)-1,2,3-triazole (pyta) and 1-(2-pyridyl)-1,2,3-triazole (tapy) diimine ligands have been prepared and electrochemically characterized. The first ligand-based reduction process is shown to be highly sensitive to the nature of the isomer as well as to the substituents on the pyridyl ring, with the peak potential changing by up to 700 mV. The abilities of this class of complexes to catalyze the electroreduction and photoreduction of CO were assessed for the first time.
View Article and Find Full Text PDFA disposable microfluidic paper-based analytical device (μPAD) was developed to easily analyse different S-nitrosothiols (RSNOs) through colorimetric measurements. RSNOs are carriers of nitric oxide (NO) that play several physiological and physiopathological roles. The quantification of RSNOs relies on their decomposition using several protocols and the colorimetric detection of the final product, NO or nitrite.
View Article and Find Full Text PDFNitric oxide is a hydrophobic radical acting as a physiological mediator in plants. Because of its unique properties, the detection of NO in plant tissues and cell suspensions remains a challenge. For this purpose, several techniques are used, each having certain advantages and limitations such as interferences with other species, questionable sensitivity, and/or selectivity or ex situ measurement.
View Article and Find Full Text PDFS-Nitrosothiols (RSNOs) are carriers of nitric oxide (NO) and have important biological activities. We propose here the use of gold nanoparticles (AuNPs) and NO-selective amperometric microsensor for the detection and quantification of S-nitrosoglutathione (GSNO) as a step toward the determination of plasma RSNOs. AuNPs were used to decompose RSNOs with the quantitative release of free NO which was selectively detected with a NO microsensor.
View Article and Find Full Text PDFNanostructured polypyrrole surfaces are fabricated by a one step colloidal templating approach, involving simultaneous polystyrene bead deposition with the electropolymerization of the pyrrole monomer. Using response surface modeling, the influence of several experimental parameters was studied, following as response the resulted film's thickness and the nanopattern's surface density. Polystyrene beads of 100 nm were immobilized by the electropolymerization of pyrrole and the spheres were dissolved in tetrahydrofuran at room temperature.
View Article and Find Full Text PDFBioelectrochemistry
December 2015
Graphite rods were modified by substituted aryldiazonium salts allowing subsequent laccase immobilisation and direct electron transfer at the cathode. Two covalent enzyme immobilisation methods were performed with carboxy and amino substituted grafted groups, either via the formation of an amide bond or a Schiff base between the glycosidic groups of the enzyme and the amino groups on the electrode surface, respectively. Laccase adsorption efficiency was consistently compared to the covalent attachment method on the same carbon surface, showing that the latter method led to a higher immobilisation yield when the electrode surface was functionalised with carboxylic groups, as shown from both laccase activity measurement towards an organic reducing substrate, ABTS, and quantitative XPS analysis.
View Article and Find Full Text PDFS-Nitrosoglutathione (GSNO) is a very important biomolecule that has crucial functions in many physiological and physiopathological processes. GSNO acts as NO donor and is a candidate for future medicines. This work describes, for the first time, the separation and the detection of GSNO and its decomposition products using capillary electrophoresis coupled to mass spectrometry (CE-MS).
View Article and Find Full Text PDFS-Nitrosothiols (RSNO) are composed of a NO group bound to the sulfhydryl group of a peptide or protein. RSNO are very important biological molecules, since they have many effects on human health. RSNO are easily naturally decomposed by metal ions, light, and heat, with different kinetics.
View Article and Find Full Text PDFA strategy is proposed for immobilization of homogeneous catalysts whereby a glassy carbon electrode is functionalized by electro-grafting of a ligand, terpyridine. The modified electrode can easily be metallated with cobalt and shows activity towards catalytic proton and CO2 reduction. The metal can be removed and the electrode re-metallated at will.
View Article and Find Full Text PDFA hybrid nanocomposite based on cobalt phthalocyanine (CoPc) immobilized on nitrogen-doped graphene (N-G) (N-G/CoPc) has been developed to modify glassy carbon electrode (GCE) for the sensitive detection of thiols. The nanocomposites were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). Cyclic voltammetric studies showed that cobalt phthalocyanine and nitrogen doped graphene have a synergic effect and significantly enhance the electrocatalytic activity of the modified electrode towards thiols oxidation compared with electrodes modified with solely CoPc or N-G.
View Article and Find Full Text PDFThe interest in the detection and quantification of S-nitrosothiols or thionitrites RSNOs in biological media and their use as pharmaceutical agents is mainly related to the discovery of nitric oxide as an endothelium relaxing factor, and analytical methodologies that are able to detect these moieties in real time, in situ and ideally with high sensitivity and selectivity could help in a better understanding of their biological pathways. In this review, we discuss the performances of the electroanalytical strategies developed for the sensing of low molecular weight RSNOs in biological fluids.
View Article and Find Full Text PDFUltramicroelectrode sensor arrays in which each electrode, or groups of electrodes, are individually addressable are of particular interest for detection of several species concomitantly, by using specific sensing chemistry for each analyte, or for mapping of one analyte to achieve spatio-temporal analysis. Microfabrication technology, for example photolitography, is usually used for fabrication of these arrays. The most widespread geometries produced by photolithography are thin-film microdisc electrode arrays with different electrode distributions (square, hexagonal, or random).
View Article and Find Full Text PDFIn this work we report on the design, microfabrication and analytical performances of a new electrochemical sensor array (ESA) which allows for the first time the simultaneous amperometric detection of nitric oxide (NO) and peroxynitrite (ONOO(-)), two biologically relevant molecules. The on-chip device includes individually addressable sets of gold ultramicroelectrodes (UMEs) of 50 µm diameter, Ag/AgCl reference electrode and gold counter electrode. The electrodes are separated into two groups; each has one reference electrode, one counter electrode and 110 UMEs specifically tailored to detect a specific analyte.
View Article and Find Full Text PDFThe multifaceted potentialities of expanded pyridiniums (EPs), based on one pyridinium core bearing a 4-pyridyl or 4-pyridylium as the N-pyridinio group, are established at both experimental and theoretical levels. Two classes of head-to-tail (htt) EPs were designed, and their first representative elements were synthesized and fully characterized. The branched (B) family is made up of 2,6-diphenyl-4-aryl-1,4'-bipyridin-1-ium (or 1,1'-diium) species, denoted 1B and 2B for monocationic EPs (with aryl = phenyl and biphenyl, respectively) and 1B(Me) and 2B(Me) for related quaternarized dicationic species.
View Article and Find Full Text PDFChemistry
September 2010
This study evaluates the impact of the extension of the π-conjugated system of pyridiniums on their various properties. The molecular scaffold of aryl-substituted expanded pyridiniums (referred to as branched species) can be photochemically bis-cyclized into the corresponding fused polycyclic derivatives (referred to as pericondensed species). The representative 1,2,4,6-tetraphenylpyridinium (1(H)) and 1,2,3,5,6-pentaphenyl-4-(p-tolyl)pyridinium (2(Me)) tetra- and hexa-branched pyridiniums are herein compared with their corresponding pericondensed derivatives, the fully fused 9-phenylbenzo[1,2]quinolizino[3,4,5,6-def]phenanthridinium (1(H)f) and the hitherto unknown hemifused 9-methyl-1,2,3-triphenylbenzo[h]phenanthro[9,10,1-def]isoquinolinium (2(Me)f).
View Article and Find Full Text PDFWe present an overview of the successes and challenges still faced in the detection of NO, O(2)(*-) and ONOO(-) in biological media. We provide a full discussion on the electrochemical analyses of each of these species and we summarise the significant research contributions towards the development of sensors for individual and simultaneous detection of these species. We emphasize the importance of understanding the potential interferents in developing such sensors.
View Article and Find Full Text PDFThe manuscript discusses different ways of forming hybrid materials between single (SWCNT) or multi (MWCNT) walled carbon nanotubes and biomimetic compounds such as metalloporphyrins, metallophthalocyanines and other MN4 complexes. The hybrid materials are employed for electrocatalysis of reactions such as oxygen and hydrogen peroxide reduction, nitric oxide oxidation, oxidation of thiols and other pollutants. Methods of characterizing the hybrid materials such as cyclic voltammetry (CV), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM) are discussed.
View Article and Find Full Text PDF