We present the first hard-constraint neural network model for predicting activity coefficients (HANNA), a thermodynamic mixture property that is the basis for many applications in science and engineering. Unlike traditional neural networks, which ignore physical laws and result in inconsistent predictions, our model is designed to strictly adhere to all thermodynamic consistency criteria. By leveraging deep-set neural networks, HANNA maintains symmetry under the permutation of the components.
View Article and Find Full Text PDFWe demonstrate that thermodynamic knowledge acquired by humans can be transferred to computers so that the machine can use it to solve thermodynamic problems and produce explainable solutions with a guarantee of correctness. The actionable knowledge representation system that we have created for this purpose is called KnowTD. It is based on an ontology of thermodynamics that represents knowledge of thermodynamic theory, material properties, and thermodynamic problems.
View Article and Find Full Text PDFBiased population samples pose a prevalent problem in the social sciences. Therefore, we present two novel methods that are based on positive-unlabeled learning to mitigate bias. Both methods leverage auxiliary information from a representative data set and train machine learning classifiers to determine the sample weights.
View Article and Find Full Text PDFPredictive models of thermodynamic properties of mixtures are paramount in chemical engineering and chemistry. Classical thermodynamic models are successful in generalizing over (continuous) conditions like temperature and concentration. On the other hand, matrix completion methods (MCMs) from machine learning successfully generalize over (discrete) binary systems; these MCMs can make predictions without any data for a given binary system by implicitly learning commonalities across systems.
View Article and Find Full Text PDF