The intestinal tract generates significant reactive oxygen species (ROS), but the role of T cell antioxidant mechanisms in maintaining intestinal homeostasis is poorly understood. We used T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), which impaired glutathione (GSH) production, crucially reducing IL-22 production by Th17 cells in the lamina propria, which is critical for gut protection. Under steady-state conditions, Gclc deficiency did not alter cytokine secretion; however, C.
View Article and Find Full Text PDFAlthough the intestinal tract is a major site of reactive oxygen species (ROS) generation, the mechanisms by which antioxidant defense in gut T cells contribute to intestinal homeostasis are currently unknown. Here we show, using T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (), that the ensuing loss of glutathione (GSH) impairs the production of gut-protective IL-22 by Th17 cells within the lamina propria. Although ablation does not affect T cell cytokine secretion in the gut of mice at steady-state, infection with increases ROS, inhibits mitochondrial gene expression and mitochondrial function in -deficient Th17 cells.
View Article and Find Full Text PDFPyruvate dehydrogenase (PDH) is the central enzyme connecting glycolysis and the tricarboxylic acid (TCA) cycle. The importance of PDH function in T helper 17 (Th17) cells still remains to be studied. Here, we show that PDH is essential for the generation of a glucose-derived citrate pool needed for Th17 cell proliferation, survival, and effector function.
View Article and Find Full Text PDFThe metabolic principles underlying the differences between follicular and marginal zone B cells (FoB and MZB, respectively) are not well understood. Here we show, by studying mice with B cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that glutathione synthesis affects homeostasis and differentiation of MZB to a larger extent than FoB, while glutathione-dependent redox control contributes to the metabolic dependencies of FoB. Specifically, Gclc ablation in FoB induces metabolic features of wild-type MZB such as increased ATP levels, glucose metabolism, mTOR activation, and protein synthesis.
View Article and Find Full Text PDFThe potent neurotoxicity of benzo[a]pyrene (B[a]P) has been suggested to be a susceptibility factor accelerating the onset of brain tumours and the emergence of neurobehavioural disturbances. B[a]P has been shown to be neurotoxic, acting directly on both the central and peripheral nervous systems, as well as indirectly via peripheral organs like liver and gut. By using a realistic B[a]P exposure scenario (0.
View Article and Find Full Text PDFRegulatory T cells (Tregs) maintain immune homeostasis and prevent autoimmunity. Serine stimulates glutathione (GSH) synthesis and feeds into the one-carbon metabolic network (1CMet) essential for effector T cell (Teff) responses. However, serine's functions, linkage to GSH, and role in stress responses in Tregs are unknown.
View Article and Find Full Text PDFLong alpha helix (LAH) from influenza virus hemagglutinin (HA) stem or stalk domain is one of the most conserved influenza virus antigens. Expression of N-terminally extended LAH in E. coli leads to assembly of α-h elical homotrimer which is structurally nearly identical to the corresponding region of post-fusion form of native HA.
View Article and Find Full Text PDFTo overcome yearly efforts and costs for the production of seasonal influenza vaccines, new approaches for the induction of broadly protective and long-lasting immune responses have been developed in the past decade. To warrant safety and efficacy of the emerging crossreactive vaccine candidates, it is critical to understand the evolution of influenza viruses in response to these new immune pressures. Here we applied unique molecular identifiers in next generation sequencing to analyze the evolution of influenza quasispecies under in vivo antibody pressure targeting the hemagglutinin (HA) long alpha helix (LAH).
View Article and Find Full Text PDFThe identification and tracking of antigen-specific immunoglobulin (Ig) sequences within total Ig repertoires is central to high-throughput sequencing (HTS) studies of infections or vaccinations. In this context, public Ig sequences shared by different individuals exposed to the same antigen could be valuable markers for tracing back infections, measuring vaccine immunogenicity, and perhaps ultimately allow the reconstruction of the immunological history of an individual. Here, we immunized groups of transgenic rats expressing human Ig against tetanus toxoid (TT), Modified Vaccinia virus Ankara (MVA), measles virus hemagglutinin and fusion proteins expressed on MVA, and the environmental carcinogen benzo[a]pyrene, coupled to TT.
View Article and Find Full Text PDFExisting Influenza A virus (IAV) vaccines target variable parts of the virus that may change between seasons. Vaccine design relies on predicting the predominant circulating influenza strains but when there is a mismatch between vaccine and circulating strains, efficacy is sub-optimal. Furthermore, current approaches provide limited protection against emerging influenza strains that may cause pandemics.
View Article and Find Full Text PDFBackground: The lack of a universal influenza vaccine is a global health problem. Interest is now focused on structurally conserved protein domains capable of eliciting protection against a broad range of influenza virus strains. The long alpha helix (LAH) is an attractive vaccine component since it is one of the most conserved influenza hemagglutinin (HA) stalk regions.
View Article and Find Full Text PDFThe stalk region of the influenza virus hemagglutinin is relatively well conserved compared with the globular head domain, which makes it a potential target for use as a universal vaccine against influenza. However, the role of CD4 T cells in the hemagglutinin stalk-specific immune response is not clear. Here we identified a mouse CD4 T-cell epitope that encompasses residues HA2 from the hemagglutinin stalk domain after a sub-lethal infection of influenza.
View Article and Find Full Text PDFBenzo[a]pyrene (B[a]P) is a small molecular weight carcinogen and the prototype of polycyclic aromatic hydrocarbons (PAHs). While these compounds are primarily known for their carcinogenicity, B[a]P and its metabolites are also neurotoxic for mammalian species. To develop a prophylactic immune strategy against detrimental effects of B[a]P, female Balb/c mice immunized with a B[a]P-diphtheria toxoid (B[a]P-DT) conjugate vaccine were sub-acutely exposed to 2mg/kg B[a]P and behavioral performances were monitored in tests related to learning and memory, anxiety and motor coordination.
View Article and Find Full Text PDFThe prototype polycyclic aromatic hydrocarbon benzo[a]pyrene (B[a]P) is an environmental pollutant and food contaminant of epidemiological importance. To protect against adverse effects of this ubiquitous carcinogen, we developed an immunoprophylactic strategy based on a B[a]P-protein conjugate vaccine to induce B[a]P specific antibodies (Grova et al., Vaccine.
View Article and Find Full Text PDFWe have recently developed an experimental vaccine based on benzo[a]pyrene (B[a]P) conjugated to tetanus toxoid as a carrier protein. In combination with Freund adjuvant, this vaccine induces high levels of B[a]P-specific antibodies to protect against detrimental effects of this carcinogen. Here we evaluate this conjugate vaccine by replacing Freund adjuvant by adjuvants that are potentially compatible with their use in humans.
View Article and Find Full Text PDFBenzo[a]pyrene (B[a]P) is a small molecular weight carcinogen and the prototype of polycyclic aromatic hydrocarbons (PAHs). While these compounds are primarily known for their carcinogenicity, B[a]P and its metabolites are also toxic for mammalian immune cells. To develop a prophylactic immune strategy against detrimental effects of B[a]P, we have immunized mice with a B[a]P-diphtheria toxoid conjugate vaccine.
View Article and Find Full Text PDFBenzo[a]pyrene (B[a]P) conjugate vaccines based on ovalbumin, tetanus toxoid and diphtheria toxoid (DT) as carrier proteins were developed to investigate the effect of specific antibodies on the bioavailability of this ubiquitous carcinogen and its metabolites. After metabolic activation of this prototype carcinogen, B[a]P forms DNA adducts which initiate chemical carcinogenesis. B[a]P-DT conjugate induced the most robust immune response.
View Article and Find Full Text PDFAbnormal glutamatergic transmission caused by modulation of N-methyl-D-aspartate (NMDA) receptors was demonstrated in animal models chronically exposed to various organic micropollutants. Recent developments in neurobiology have implicated these receptors in the regulation of anxiety. In order to investigate anxiety-related effects of benzo[a]pyrene (B[a]P), Balb/c mice were sub-acutely exposed to B[a]P (0.
View Article and Find Full Text PDFThe aim of the present work is to investigate whether microtubule-affecting drugs including vincristine, vinblastine, vindesine and vinorelbine are able to produce an anti-angiogenic effect at non-cytotoxic doses in the same way of taxol. The cytotoxic effects were determined by means of the colorimetric MTT assay, and the anti-angiogenic effects on HUVEC cells growing on Matrigel and forming capillary networks. Sixteen additional drugs (camptothecin, SN38, topothecan, adriamycin, daunomycin, etoposide, bleomycin, melphalan, mitomycin C, TNP-470, cisplatin, carboplatin, 5-fluorouracil, methotrexate, suramin and batimastat) were used as control in order to test the specificity of the microtubule-affecting drug effects.
View Article and Find Full Text PDF