Publications by authors named "Sophie Eloy-Trinquet"

Muscle-tendon interactions are important for the establishment of a functional musculoskeletal system. Fgf4 and Fgf8 are expressed in muscle and tendon boundary regions during limb development, suggesting a potential role for Fgf signaling pathway in muscle and tendon interactions. We have examined the expression of Fgf syn-expression group components during muscle and tendon formation of vertebrate limb development.

View Article and Find Full Text PDF

Mice deficient for the homeobox gene Six1 display defects in limb muscles consistent with the Six1 expression in myogenic cells. In addition to its myogenic expression domain, Six1 has been described as being located in digit tendons and as being associated with connective tissue patterning in mouse limbs. With the aim of determining a possible involvement of Six1 in tendon development, we have carefully characterised the non-myogenic expression domain of the Six1 gene in mouse and chick limbs.

View Article and Find Full Text PDF

Key molecules which regulate the formation of the heart have been identified; however, the mechanism of cardiac morphogenesis remains poorly understood at the cellular level. We have adopted a genetic approach, which permits retrospective clonal analysis of myocardial cells in the mouse embryo, based on the targeting of an nlaacZ reporter to the alpha-cardiac actin gene. A rare intragenic recombination event leads to a clone of beta-galactosidase-positive myocardial cells.

View Article and Find Full Text PDF

In this study, we investigated (in the early mouse embryo) the clonal properties of precursor cells which contribute to the segmented myotome, a structure derived from the somites. We used the laacZ method of single cell-labelling to visualise clones born before segmentation and bilateralisation. We found that clones which contribute to several segments both unilateral and bilateral were regionalised along the mediolateral axis and that their mediolateral position was maintained in successive adjacent segments.

View Article and Find Full Text PDF

In vertebrates, muscles of the back (epaxial) and of the body wall and limbs (hypaxial) derive from precursor cells located in the dermomyotome of the somites. In this paper, we investigate the mediolateral regionalisation of epaxial and hypaxial muscle precursor cells during segmentation of the paraxial mesoderm and myotome formation, using mouse LaacZ/LacZ chimeras. We demonstrate that precursors of medial and lateral myotomes are clonally separated in the mouse somite, consistent with earlier studies in birds.

View Article and Find Full Text PDF