Publications by authors named "Sophie E Walker"

Background: Understanding why only a subset of trauma-exposed individuals develop posttraumatic stress disorder is critical for advancing clinical strategies. A few behavioral (deficits in fear extinction) and biological (blunted glucocorticoid levels, small hippocampal size, and rapid-eye-movement sleep [REMS] disturbances) traits have been identified as potential vulnerability factors. However, whether and to what extent these traits are interrelated and whether one of them could causally engender the others are not known.

View Article and Find Full Text PDF

Early-life stress (ELS) is known to exert long-term effects on brain function, with resulting deleterious consequences for several aspects of mental health, including the development of addiction to drugs of abuse. One potential mechanism in humans is suggested by findings that ELS interacts with polymorphisms of the GABRA2 gene, encoding α2 subunits of GABAA receptors, to increase the risk for both post-traumatic stress disorder and vulnerability to cocaine addiction. We used a mouse model, in which the amount of material for nest building was reduced during early postnatal life, to study interactions between ELS and expression of α2-containing GABAA receptors in influencing cocaine-related behaviour.

View Article and Find Full Text PDF

Exposure to early adversity is implicated in the development of aggressive behaviour later in life in some but not all individuals. The reasons for the variability in response to such experiences are not clear but may relate to pre-existing individual differences that influence their downstream effects. Applying structural magnetic resonance imaging (MRI) to a rat model of abnormal aggression induced by peripubertal stress, we examined whether individual differences in the development of an aggressive phenotype following stress exposure were underpinned by variation in the structure of aggression-associated, corticolimbic brain regions.

View Article and Find Full Text PDF

Experience of adversity early in life and dysregulation of hypothalamus-pituitary-adrenocortical (HPA) axis activity are risk factors often independently associated with the development of psychopathological disorders, including depression, PTSD and pathological aggression. Additional evidence suggests that in combination these factors may interact to shape the development and expression of psychopathology differentially, though little is known about underlying mechanisms. Here, we studied the long-term consequences of early life stress exposure on individuals with differential constitutive glucocorticoid responsiveness to repeated stressor exposure, assessing both socio-affective behaviors and brain activity in regions sensitive to pathological alterations following stress.

View Article and Find Full Text PDF

Glucocorticoids coordinate responses that enable an individual to cope with stressful challenges and, additionally, mediate adaptation following cessation of a stressor. There are important individual differences in the magnitude of glucocorticoid responsiveness to stressors. However, whether individual differences in glucocorticoid responsiveness to stress are linked to different behavioral strategies in coping with social and non-social challenges is not easily studied, owing to the lack of appropriate animal models.

View Article and Find Full Text PDF

In mitotic cells, the cyclin-dependent kinase (CDK) subunit protein CKS1 regulates S phase entry by mediating degradation of the CDK inhibitor p27. Although mature neurons lack mitotic CDKs, we found that CKS1 was actively expressed in post-mitotic neurons of the adult hippocampus. Interestingly, Cks1 knockout (Cks1-/-) mice exhibited poor long-term memory, and diminished maintenance of long-term potentiation in the hippocampal circuits.

View Article and Find Full Text PDF

Aggressive behavior is not uniform, including proactive and reactive forms of aggression. Aberrant functioning of the hypothalamic-pituitary-adrenal (HPA) axis is frequently associated with abnormal aggression. Here, we review the rodent literature in order to assess whether developmental abnormalities in the HPA axis can be causally linked with the emergence of abnormal aggression.

View Article and Find Full Text PDF

Alcohol dependence is a common, complex and debilitating disorder with genetic and environmental influences. Here we show that alcohol consumption increases following mutations to the γ-aminobutyric acidA receptor (GABAAR) β1 subunit gene (Gabrb1). Using N-ethyl-N-nitrosourea mutagenesis on an alcohol-averse background (F1 BALB/cAnN x C3H/HeH), we develop a mouse model exhibiting strong heritable preference for ethanol resulting from a dominant mutation (L285R) in Gabrb1.

View Article and Find Full Text PDF

Human genetic studies have suggested that polymorphisms of the GABRA2 gene encoding the GABA(A) α2-subunit are associated with ethanol dependence. Variations in this gene also convey sensitivity to the subjective effects of ethanol, indicating a role in mediating ethanol-related behaviours. We therefore investigated the consequences of deleting the α2-subunit on the ataxic and rewarding properties of ethanol in mice.

View Article and Find Full Text PDF

Rationale: There is extensive evidence that alcoholism and impulsivity are related, but the direction of causality is unclear.

Objectives: The aim of the present investigation was to study the effects of chronic ethanol treatment and withdrawal in measures of attention and impulse control in the five-choice serial reaction time task (5CSRTT) in mice.

Materials And Methods: C57BL/6J mice were trained in the 5CSRTT and then tested in a variable inter-trial interval (vITI) session, which promotes the emergence of premature responses, a measure of poor inhibitory control.

View Article and Find Full Text PDF