Pseudomonas aeruginosa, a major lung pathogen in cystic fibrosis (CF) patients, secretes an elastolytic metalloproteinase (EPa) contributing to bacterial pathogenicity. Proteinase-activated receptor 2 (PAR2), implicated in the pulmonary innate defense, is activated by the cleavage of its extracellular N-terminal domain, unmasking a new N-terminal sequence starting with SLIGKV, which binds intramolecularly and activates PAR2. We show that EPa cleaves the N-terminal domain of PAR2 from the cell surface without triggering receptor endocytosis as trypsin does.
View Article and Find Full Text PDFProteinase-activated receptor (PAR)-2 is cleaved within its aminoterminal extracellular domain by serine proteinases such as trypsin, unmasking a new aminoterminus starting with the sequence SLIGKV, which binds intramolecularly and activates the receptor. PAR-2 has been reported to be involved in inflammation within the lungs. We show that PAR-2 is expressed not only by human alveolar (A549), but also by bronchial (16HBE) epithelial cell lines, using RT-PCR and flow cytometry with a PAR-2 antibody whose epitope maps over the trypsin cleavage site.
View Article and Find Full Text PDF