Publications by authors named "Sophie De Bentzmann"

Pseudomonas aeruginosa is a major cause of nosocomial infections, particularly in immunocompromised patients or in individuals with cystic fibrosis. Genome sequences reveal that most P. aeruginosa strains contain a significant number of accessory genes gathered in genomic islands.

View Article and Find Full Text PDF

The human pathogen Pseudomonas aeruginosa induces phosphorylation of the adaptor protein CrkII by activating the non-receptor tyrosine kinase Abl to promote its uptake into host cells. So far, specific factors of P. aeruginosa, which induce Abl/CrkII signalling, are entirely unknown.

View Article and Find Full Text PDF

Myeloablative treatment preceding hematopoietic stem cell (HSC) and progenitor cell (HS/PC) transplantation results in severe myeloid cytopenia and susceptibility to infections in the lag period before hematopoietic recovery. We have previously shown that macrophage colony-stimulating factor (CSF-1; M-CSF) directly instructed myeloid commitment in HSCs. In this study, we tested whether this effect had therapeutic benefit in improving protection against pathogens after HS/PC transplantation.

View Article and Find Full Text PDF

In response to environmental changes, Pseudomonas aeruginosa is able to switch from a planktonic (free swimming) to a sessile (biofilm) lifestyle. The two-component system (TCS) GacS/GacA activates the production of two small non-coding RNAs, RsmY and RsmZ, but four histidine kinases (HKs), RetS, GacS, LadS and PA1611, are instrumental in this process. RetS hybrid HK blocks GacS unorthodox HK autophosphorylation through the formation of a heterodimer.

View Article and Find Full Text PDF

Contact-dependent inhibition (CDI) toxins, delivered into the cytoplasm of target bacterial cells, confer to host strain a significant competitive advantage. Upon cell contact, the toxic C-terminal region of surface-exposed CdiA protein (CdiA-CT) inhibits the growth of CDI- bacteria. CDI+ cells express a specific immunity protein, CdiI, which protects from autoinhibition by blocking the activity of cognate CdiA-CT.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is a Gram-negative environmental species and an opportunistic microorganism, establishing itself in vulnerable patients, such as those with cystic fibrosis (CF) or those hospitalized in intensive care units (ICU). It has become a major cause of nosocomial infections worldwide and a serious threat to Public Health because of overuse and misuse of antibiotics that have selected highly resistant strains against which very few therapeutic options exist. Herein is illustrated the intraclonal evolution of the genome of sequential isolates collected in a single CF patient from the early phase of pulmonary colonization to the fatal outcome.

View Article and Find Full Text PDF

Pseudomonas aeruginosa lung infections are a major cause of death in cystic fibrosis and hospitalized patients. Treating these infections is becoming difficult due to the emergence of conventional antimicrobial multiresistance. While monosaccharides have proved beneficial against such bacterial lung infection, the design of several multivalent glycosylated macromolecules has been shown to be also beneficial on biofilm dispersion.

View Article and Find Full Text PDF

Readily accessible, low-valency glycoclusters based on a triazine core bearing D-galactose and L-fucose epitopes are able to inhibit biofilm formation by Pseudomonas aeruginosa. These multivalent ligands are simple to synthesize, are highly soluble, and can be either homofunctional or heterofunctional. The galactose-decorated cluster shows good affinity for Pseudomonas aeruginosa lectin lecA.

View Article and Find Full Text PDF

Glycosphingolipids are important structural constituents of cellular membranes. They are involved in the formation of nanodomains ("lipid rafts"), which serve as important signaling platforms. Invasive bacterial pathogens exploit these signaling domains to trigger actin polymerization for the bending of the plasma membrane and the engulfment of the bacterium--a key process in bacterial uptake.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is an opportunistic human pathogen implicated in nosocomial infection and infecting people with compromised immune systems such as cystic fibrosis patients. Although multiple genes involved in P. aeruginosa pathogenesis have been characterized, the overall mechanism of virulence is not fully understood.

View Article and Find Full Text PDF
Article Synopsis
  • Protein-carbohydrate interactions play a crucial role in the initial stages of infection, particularly with the pathogen Pseudomonas aeruginosa, which produces proteins that specifically bind to host glycan epitopes.
  • Experimental methods for studying these interactions have been adapted from those used in protein-protein or protein-ligand studies.
  • Various techniques are outlined for assessing lectin activity, identifying sugar specificity, measuring binding affinity along with thermodynamic and kinetic parameters, and crystallizing lectin-carbohydrate complexes for detailed structural analysis.
View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on identifying new protein partners in Pseudomonas aeruginosa to better understand the biological processes involving a specific protein.
  • Current partner genes for the protein of interest are largely unknown and dispersed in the genome, complicating the identification process.
  • The researchers developed pan-genomic bacterial two-hybrid libraries as a method to discover new protein partners in P. aeruginosa.
View Article and Find Full Text PDF

Pseudomonas aeruginosa, a human opportunistic pathogen, is capable of provoking acute and chronic infections that are associated with defined sets of virulence factors. During chronic infections, the bacterium accumulates mutations that silence some and activate other genes. Here we show that the cystic fibrosis isolate CHA exhibits a unique virulence phenotype featuring a mucoid morphology, an active Type III Secretion System (T3SS, hallmark of acute infections), and no Type VI Secretion System (H1-T6SS).

View Article and Find Full Text PDF

Within the vasculature, uncontrolled pericellular proteolysis can lead to disruption of cell-to-cell and cell-to-matrix interactions and subsequent detachment-induced cell apoptosis, or anoikis, contributing to inflammatory vascular diseases, with the endothelium as the major target. Most studies so far have focused on endogenous proteinases. However, during bloodstream infections, bacterial proteinases may also trigger endothelial anoikis.

View Article and Find Full Text PDF

The cell-surface signalling (CSS) system represents an important regulatory mechanism by which Gram-negative bacteria respond to the environment. Gene regulation by CSS systems is particularly present and important in the opportunistic human pathogen Pseudomonas aeruginosa. In this bacterium, these mechanisms regulate mainly the uptake of iron, but also virulence functions.

View Article and Find Full Text PDF

Bacterial biofilm is considered as a particular lifestyle helping cells to survive hostile environments triggered by a variety of signals sensed and integrated through adequate regulatory pathways. Pseudomonas aeruginosa, a Gram-negative bacterium causing severe infections in humans, forms biofilms and is a fantastic example for fine-tuning of the transition between planktonic and community lifestyles through two-component systems (TCS). Here we decipher the regulon of the P.

View Article and Find Full Text PDF

This review provides an overview of current knowledge concerning type IVb pili in Gram-negative bacteria. The number of these pili identified is steadily increasing with genome sequencing and mining studies, but studies of these pili are somewhat uneven, because their expression is tightly regulated and the signals or regulators controlling expression need to be identified. However, as illustrated here, they have a number of interesting functional, assembly-related and regulatory features.

View Article and Find Full Text PDF

Bacterial gene regulation is controlled by complex regulatory cascades which integrate input environmental signals and adapt specific and adequate output cellular responses. These complex networks are far from being elucidated, in particular in Pseudomonas aeruginosa. In the present study, we developed bacterial two-hybrid genome fragment libraries of the P.

View Article and Find Full Text PDF

We used a combination of in silico and large-scale mutagenesis approaches to expand our current knowledge of the genetic determinants used by Pseudomonas putida KT2440 to attach to surfaces. We first identified in silico orthologues that have been annotated in Pseudomonas aeruginosa as potentially involved in attachment. In this search 67 paired-related genes of P.

View Article and Find Full Text PDF

Pseudomonas aeruginosa assembles several cell surface-associated organelles, including those of the chaperone usher (CU) pathway. Five different CU loci have been identified and characterized in various strains of P.aeruginosa.

View Article and Find Full Text PDF

Microbiologists have extensively worked during the past decade on a particular phase of the bacterial cell cycle known as biofilm, in which single-celled individuals gather together to form a sedentary but dynamic community within a complex structure, displaying spatial and functional heterogeneity. In response to the perception of environmental signals by sensing systems, appropriate responses are triggered, leading to biofilm formation. This process involves various molecular systems that enable bacteria to identify appropriate surfaces on which to anchor themselves, to stick to those surfaces and to each other, to construct multicellular communities several hundreds of micrometers thick, and to detach from the community.

View Article and Find Full Text PDF

Disruption of cell/ECM interactions resulting from uncontrolled pericellular proteolysis leads to detachment-induced cell apoptosis (anoikis), contributing to the morbid evolution of inflammatory vascular diseases. During cardiovascular infections, bacterial proteinases might induce vascular cells to enter a similar pathway. We focused on LasB, the predominant metalloproteinase secreted by the haematotropic pathogen Pseudomonas aeruginosa.

View Article and Find Full Text PDF

Pseudomonas aeruginosa, a Gram-negative environmental species and an opportunistic microorganism, establishes itself in vulnerable patients, such as those with cystic fibrosis or hospitalized in intensive care units. It has become a major cause of nosocomial infections worldwide (about 10% of all such infections in most European Union hospitals) and a serious threat to Public Health. The overuse and misuse of antibiotics have also led to the selection of resistant strains against which very few therapeutic options exist.

View Article and Find Full Text PDF