Publications by authors named "Sophie Clayton"

is a mixotrophic dinoflagellate harmful algal bloom (HAB) species that blooms annually in the lower Chesapeake Bay. undertakes a diel vertical migration (DVM) which may give it a competitive advantage over purely phototrophic organisms who cannot access deeper nutrient pools and allow it to form large toxic blooms. Laboratory-based estimates of DVM rates suggest that it is one of the fastest known dinoflagellate swimmers and understanding this behavior is likely important for modeling and predicting blooms.

View Article and Find Full Text PDF
Article Synopsis
  • Phytoplankton shows varied reactions to temperature changes, affecting their survival and community dynamics in marine environments.
  • Researchers analyzed how different thermal growth parameters influence phytoplankton community structure using models and empirical data for six main types.
  • The study found that using identical growth rates across phytoplankton types led to unrealistic community models, and recognizing the unique growth characteristics of each type significantly alters predictions about biogeochemical processes in climate change scenarios.
View Article and Find Full Text PDF

The Kuroshio current separates from the Japanese coast to become the eastward flowing Kuroshio Extension (KE) characterized by a strong latitudinal density front, high levels of mesoscale (eddy) energy, and high chlorophyll (Chl). While satellite measurements of Chl show evidence of the impact of mesoscale eddies on the standing stock of phytoplankton, there have been very limited synoptic, spatially resolved in situ estimates of productivity in this region. Here, we present underway measurements of oxygen/argon supersaturation (ΔO/Ar), a tracer of net biological productivity, for the KE made in spring, summer, and early autumn.

View Article and Find Full Text PDF

As primary producers, phytoplankton play an integral role in global biogeochemical cycles through their production of oxygen and fixation of carbon. They also provide significant ecosystem services, by supporting secondary production and fisheries. Phytoplankton biomass and diversity have been identified by the Global Ocean Observing System (GOOS) as Essential Ocean Variables (EOVs), properties that need to be monitored to better understand and predict the ocean system.

View Article and Find Full Text PDF

The study of connectivity patterns in networks has brought novel insights across diverse fields ranging from neurosciences to epidemic spreading or climate. In this context, betweenness centrality has demonstrated to be a very effective measure to identify nodes that act as focus of congestion, or bottlenecks, in the network. However, there is not a way to define betweenness outside the network framework.

View Article and Find Full Text PDF

The expression of long noncoding RNAs is highly enriched in the human nervous system. However, the function of neuronal lncRNAs in the cytoplasm and their potential translation remains poorly understood. Here we performed Poly-Ribo-Seq to understand the interaction of lncRNAs with the translation machinery and the functional consequences during neuronal differentiation of human SH-SY5Y cells.

View Article and Find Full Text PDF

SeaFlow is an underway flow cytometer that provides continuous shipboard observations of the abundance and optical properties of small phytoplankton (<5 μm in equivalent spherical diameter, ESD). Here we present data sets consisting of SeaFlow-based cell abundance, forward light scatter, and pigment fluorescence of individual cells, as well as derived estimates of ESD and cellular carbon content of picophytoplankton, which includes the cyanobacteria Prochlorococcus, Synechococcus and small-sized Crocosphaera (<5 μm ESD), and picophytoplankton and nanophytoplankton (2-5 μm ESD). Data were collected in surface waters (≈5 m depth) from 27 oceanographic cruises carried out in the Northeast Pacific Ocean between 2010 and 2018.

View Article and Find Full Text PDF

Motivation: Recent technological innovations in flow cytometry now allow oceanographers to collect high-frequency flow cytometry data from particles in aquatic environments on a scale far surpassing conventional flow cytometers. The SeaFlow cytometer continuously profiles microbial phytoplankton populations across thousands of kilometers of the surface ocean. The data streams produced by instruments such as SeaFlow challenge the traditional sample-by-sample approach in cytometric analysis and highlight the need for scalable clustering algorithms to extract population information from these large-scale, high-frequency flow cytometers.

View Article and Find Full Text PDF

Theoretical studies predict that competition for limited resources reduces biodiversity to the point of ecological instability, whereas strong predator/prey interactions enhance the number of coexisting species and limit fluctuations in abundances. In open ocean ecosystems, competition for low availability of essential nutrients results in relatively few abundant microbial species. The remarkable stability in overall cell abundance of the dominant photosynthetic cyanobacterium Prochlorococcus is assumed to reflect a simple food web structure strongly controlled by grazers and/or viruses.

View Article and Find Full Text PDF

Biomonitoring using benthic macroinvertebrates has been used to assess water quality in Europe since the early 20th century. Most methods use community-level measurements, and the use of single-species responses has been limited, despite their potential benefits as sensitive, early warning indicators. Here we evaluate a single-species in situ assay in which the response is feeding inhibition of the freshwater amphipod Gammarus pulex.

View Article and Find Full Text PDF