Publications by authors named "Sophie Cheron"

Rice yellow mottle virus (RYMV) causes one of the most devastating rice diseases in Africa. Management of RYMV is challenging. Genetic resistance provides the most effective and environment-friendly control.

View Article and Find Full Text PDF

Viral diseases are a major limitation for crop production, and their control is crucial for sustainable food supply. We investigated by a combination of functional genetics and experimental evolution the resistance of rice to the rice yellow mottle virus (RYMV), which is among the most devastating rice pathogens in Africa, and the mechanisms underlying the extremely fast adaptation of the virus to its host. We found that the RYMV3 gene that protects rice against the virus codes for a nucleotide-binding and leucine-rich repeat domain immune receptor (NLRs) from the Mla-like clade of NLRs.

View Article and Find Full Text PDF

Background: Rice yellow mottle virus (RYMV) is a major rice pathogen in Africa. Three resistance genes, i.e.

View Article and Find Full Text PDF

A new resistance gene against Rice yellow mottle virus was identified and mapped in a 15-kb interval. The best candidate is a CC-NBS-LRR gene. Rice yellow mottle virus (RYMV) disease is a serious constraint to the cultivation of rice in Africa and selection for resistance is considered to be the most effective management strategy.

View Article and Find Full Text PDF

We present here the first curated collection of wild and cultivated African rice species. For that, we designed specific SNPs and were able to structure these very low diverse species. Oryza glaberrima, the cultivated African rice, is endemic from Africa.

View Article and Find Full Text PDF

RYMV2 is a major recessive resistance gene identified in cultivated African rice (Oryza glaberrima) which confers high resistance to the Rice yellow mottle virus (RYMV). We mapped RYMV2 in an approximately 30-kb interval in which four genes have been annotated. Sequencing of the candidate region in the resistant Tog7291 accession revealed a single mutation affecting a predicted gene, as compared with the RYMV-susceptible O.

View Article and Find Full Text PDF

Rice yellow mottle virus (RYMV) is the most damaging rice-infecting virus in Africa. However, few sources of high resistance and only a single major resistance gene, RYMV1, are known to date. We screened a large representative collection of African cultivated rice (Oryza glaberrima) for RYMV resistance.

View Article and Find Full Text PDF