Publications by authors named "Sophie Charlotte Brune"

Early and reliable prediction of shunt-dependent hydrocephalus (SDHC) after aneurysmal subarachnoid hemorrhage (aSAH) may decrease the duration of in-hospital stay and reduce the risk of catheter-associated meningitis. Machine learning (ML) may improve predictions of SDHC in comparison to traditional non-ML methods. ML models were trained for CHESS and SDASH and two combined individual feature sets with clinical, radiographic, and laboratory variables.

View Article and Find Full Text PDF

Reliable prediction of outcomes of aneurysmal subarachnoid hemorrhage (aSAH) based on factors available at patient admission may support responsible allocation of resources as well as treatment decisions. Radiographic and clinical scoring systems may help clinicians estimate disease severity, but their predictive value is limited, especially in devising treatment strategies. In this study, we aimed to examine whether a machine learning (ML) approach using variables available on admission may improve outcome prediction in aSAH compared to established scoring systems.

View Article and Find Full Text PDF