The N-degron pathway is a branch of the ubiquitin-proteasome system where amino-terminal residues serve as degradation signals. In a synthetic biology approach, we expressed ubiquitin ligase PRT6 and ubiquitin conjugating enzyme 2 (AtUBC2) from in a strain with mutation in its endogenous N-degron pathway. The two enzymes re-constitute part of the plant N-degron pathway and were probed by monitoring the stability of co-expressed GFP-linked plant proteins starting with Arginine N-degrons.
View Article and Find Full Text PDFSuccessful emergence from the soil is essential for plant establishment in natural and farmed systems. It has been assumed that the absence of light in the soil is the preeminent signal perceived during early seedling development, leading to a distinct morphogenic plan (skotomorphogenesis) [1], characterized by traits providing an adaptive advantage until emergence and photomorphogenesis. These traits include suppressed chlorophyll synthesis, promotion of hypocotyl elongation, and formation of a closed apical hook that protects the stem cell niche from damage [2, 3].
View Article and Find Full Text PDFThe group VII ethylene response factors (ERFVIIs) are plant-specific transcription factors that have emerged as important regulators of abiotic and biotic stress responses, in particular, low-oxygen stress. A defining feature of ERFVIIs is their conserved N-terminal domain, which renders them oxygen- and nitric oxide (NO)-dependent substrates of the N-end rule pathway of targeted proteolysis. In the presence of these gases, ERFVIIs are destabilized, whereas an absence of either permits their accumulation; ERFVIIs therefore coordinate plant homeostatic responses to oxygen availability and control a wide range of NO-mediated processes.
View Article and Find Full Text PDFNitric oxide (NO) is an important signaling compound in prokaryotes and eukaryotes. In plants, NO regulates critical developmental transitions and stress responses. Here, we identify a mechanism for NO sensing that coordinates responses throughout development based on targeted degradation of plant-specific transcriptional regulators, the group VII ethylene response factors (ERFs).
View Article and Find Full Text PDF