Background: The prognosis of COVID-19 patients with cardiac involvement is unfavorable and it remains unknown which patients are at risk. The virus enters cells via its receptor angiotensin-converting enzyme 2 (ACE2). Myocardial ACE2 expression is increased in structural heart disease (SHD).
View Article and Find Full Text PDFOver the past decades, shockwave therapy (SWT) has gained increasing interest as a therapeutic approach for regenerative medicine applications, such as healing of bone fractures and wounds. More recently, pre-clinical studies have elucidated potential mechanisms for the regenerative effects of SWT in myocardial ischemia. The mechanical stimulus of SWT may induce regenerative effects in ischemic tissue growth factor release, modulation of inflammatory response, and angiogenesis.
View Article and Find Full Text PDFShockwave therapy (SWT) shows promising regenerative effects in several different tissues. However, the underlying molecular mechanisms are poorly understood. Angiogenesis, a process of new blood vessel formation is a leading driver of regeneration in softer tissues as well as a recently discovered effect of SWT.
View Article and Find Full Text PDFShockwave therapy (SWT) represents a promising regenerative treatment option for patients with ischemic cardiomyopathy. Although no side-effects have been described upon SWT, potential cellular damage at therapeutic energies has not been addressed so far. In this work, we aimed to define a therapeutic range for shock wave application for myocardial regeneration.
View Article and Find Full Text PDF