Postharvest processing of coffee has been shown to impact cup quality. Yeasts are known to modulate the sensory traits of the final cup of coffee after controlled fermentation at the farm. Here, we enumerated native coffee yeasts in a Nicaraguan farm during dry and semidry postharvest processing of Arabica and Robusta beans.
View Article and Find Full Text PDFPost-harvest wet coffee processing is a commonly applied method to transform coffee cherries into green coffee beans through depulping or demucilaging, fermentation, washing, soaking, drying, and dehulling. Multiple processing parameters can be modified and thus influence the coffee quality (green coffee beans and cup quality). The present study aimed to explore the impacts of these parameters, including processing type (depulping or demucilaging), fermentation duration, and application of soaking, on the microbial community dynamics, metabolite compositions of processing waters (fermentation and soaking) and coffee beans, and resulting cup quality through a multiphasic approach.
View Article and Find Full Text PDFA cup of coffee is the final product of a complex chain of operations. Wet postharvest processing of coffee is one of these operations, which involves a fermentation that inevitably has to be performed on-farm. During wet coffee processing, the interplay between microbial activities and endogenous bean metabolism results in a specific flavor precursor profile of the green coffee beans.
View Article and Find Full Text PDFUnlabelled: The postharvest treatment and processing of fresh coffee cherries can impact the quality of the unroasted green coffee beans. In the present case study, freshly harvested Arabica coffee cherries were processed through two different wet and dry methods to monitor differences in the microbial community structure and in substrate and metabolite profiles. The changes were followed throughout the postharvest processing chain, from harvest to drying, by implementing up-to-date techniques, encompassing multiple-step metagenomic DNA extraction, high-throughput sequencing, and multiphasic metabolite target analysis.
View Article and Find Full Text PDF