Publications by authors named "Sophia I Klokishner"

New tetranuclear and octanuclear mixed-valent cobalt(II/III) pivalate clusters, namely, [NaCo(OCCMe)(HOCCMe)(teaH)(N)]·2HO (in two polymorphic modifications, 1 and 1a) and [Co(OCCMe)(teaH)(N)](MeCCO)·MeCN·HO (2) have been synthesized by ultrasonic treatment of a dinuclear cobalt(II) pivalate precursor with sodium azide and triethanolamine (teaH) ligand in acetonitrile. The use of Dy(NO)·6HO in a similar reaction led to the precipitation of a tetranuclear [NaCo(OCCMe)(teaH)(N)(NO)(HO)]·HO (3) cluster and a heterometallic hexanuclear [CoDy(OH)(OCCMe)(teaH)(HO)](NO)·HO (4) cluster. Single-crystal X-ray analysis showed that 1 (1a) and 3 consist of a tetranuclear pivalate/teaH mixed-ligand cluster [CoCo(OCCMe)(teaH)(N)] decorated with sodium pivalates [Na(OCCMe)(HOCCMe)] (1 or 1a) or sodium nitrates [Na(NO)] (3) to form a square-pyramidal assembly.

View Article and Find Full Text PDF

New exotic phenomena have recently been discovered in oxides of paramagnetic Ir(4+) ions, widely known as 'iridates'. Their remarkable properties originate from concerted effects of the crystal field, magnetic interactions and strong spin-orbit coupling, characteristic of 5d metal ions. Despite numerous experimental reports, the electronic structure of these materials is still challenging to elucidate, and not attainable in the isolated, but chemically inaccessible, [IrO6](8-) species (the simplest molecular analogue of the elementary {IrO6}(8-) fragment present in all iridates).

View Article and Find Full Text PDF

The ligand-centered radical complex [(CoTPMA)2 -μ-bmtz(.-) ](O3 SCF3 )3 ⋅CH3 CN (bmtz=3,6-bis(2'-pyrimidyl)-1,2,4,5-tetrazine, TPMA=tris-(2-pyridylmethyl)amine) has been synthesized from the neutral bmtz precursor. Single-crystal X-ray diffraction studies have confirmed the presence of the ligand-centered radical.

View Article and Find Full Text PDF

A theoretical model has been developed to explain at the electronic level the charge-transfer-induced spin transition (CTIST) in crystals based on cyano-bridged binuclear Fe-Co clusters. The CTIST is considered as a cooperative phenomenon (phase transformation) driven by the long-range electron-deformational interaction via the acoustic phonons field that is taken into account within the mean field approach. The model for CTIST includes also the metal-metal electron transfer and intracluster magnetic exchange.

View Article and Find Full Text PDF

A microscopic approach to the problem of cooperative spin crossover in the [MnL2]NO3 crystal, which contains Mn(III) ions as structural units, is elaborated on, and the main mechanisms governing this effect are revealed. The proposed model also takes into account the splitting of the low-spin 3T1 (t(2)(4)) and high-spin 5E (t(2)(3)e) terms by the low-symmetry crystal field. The low-spin → high-spin transition has been considered as a cooperative phenomenon driven by interaction of the electronic shells of the Mn(III) ions with the all-around full-symmetric deformation that is extended over the crystal lattice via the acoustic phonon field.

View Article and Find Full Text PDF

The optical absorption spectra of manganese-promoted sulfated zirconia, a highly active alkane isomerization catalyst, were found to be characterized by oxygen-to-manganese charge-transfer transitions at 300-320 nm and d-d transitions of manganese ions at 580 and 680 nm. The latter were attributed to Mn(4+) and Mn(3+) ions, which are known to be incorporated in the zirconia lattice. The oxygen surroundings of these ions were modeled assuming a substitutional solid solution.

View Article and Find Full Text PDF

We report the first single-molecule magnet (SMM) to incorporate the [Os(CN)(6)](3-) moiety. The compound (1) has a trimeric, cyanide-bridged Mn(III)-Os(III)-Mn(III) skeleton in which Mn(III) designates a [Mn(5-Brsalen)(MeOH)](+) unit (5-Brsalen=N,N'-ethylenebis(5-bromosalicylideneiminato)). X-ray crystallographic experiments reveal that 1 is isostructural with the Mn(III)-Fe(III)-Mn(III) analogue (2).

View Article and Find Full Text PDF

This article is a part of our efforts to control the magnetic anisotropy in cyanide-based exchange-coupled systems with the eventual goal to obtain single-molecule magnets with higher blocking temperatures. We give the theoretical interpretation of the magnetic properties of the new pentanuclear complex {[Ni(II)(tmphen)(2)](3)[Os(III)(CN)(6)](2)} x 6 CH(3)CN (Ni(II)(3)Os(III)(2) cluster). Because the system contains the heavy Os(III) ions, spin-orbit coupling considerably exceeds the contributions from the low-symmetry crystal field and exchange coupling.

View Article and Find Full Text PDF

The electronic structures of the compounds K[(5-Brsalen)(2)(H(2)O)(2)-Mn(2)M(III)(CN)(6)].2H(2)O (M(III) = Co(III), Cr(III), Fe(III)) have been determined by inelastic neutron scattering (INS) and magnetic susceptibility studies, revealing the manganese(III) single-ion anisotropy and exchange interactions that define the low-lying states of the Mn-M(III)-Mn trimeric units. Despite the presence of an antiferromagnetic intertrimer interaction, the experimental evidence supports the classification of both the Cr(III) and Fe(III) compounds as single-molecule magnets.

View Article and Find Full Text PDF

In this article we report for the first time experimental details concerning the synthesis and full characterization (including the single-crystal X-ray structure) of the spin-canted zigzag-chain compound [Co(H2L)(H2O)]infinity [L = 4-Me-C6H4-CH2N(CPO3H2)2], which contains antiferromagnetically coupled, highly magnetically anisotropic Co(II) ions with unquenched orbital angular momenta, and we also propose a new model to explain the single-chain magnet behavior of this compound. The model takes into account (1) the tetragonal crystal field and the spin-orbit interaction acting on each Co(II) ion, (2) the antiferromagnetic Heisenberg exchange between neighboring Co(II) ions, and (3) the tilting of the tetragonal axes of the neighboring Co units in the zigzag structure. We show that the tilting of the anisotropy axes gives rise to spin canting and consequently to a nonvanishing magnetization for the compound.

View Article and Find Full Text PDF

The paper is aimed at the elucidation of the main factors responsible for the single-chain magnet behavior of the cobalt(II) disphosphonate compound Co(H2L)(H2O) with a 1D structure. The model takes into account the spin-orbit interaction, the axial component of the octahedral crystal field acting on the ground-state cubic 4T1 terms of the Co(II) ions, the antiferromagnetic exchange interaction between Co(II) ions as well as the difference in the crystallographic positions of these ions. The conditions that favor the single-chain magnet behavior based on spin canting in a 1D chain containing inequivalent Co(II) centers are discussed.

View Article and Find Full Text PDF

We study the orbitally dependent magnetic exchange in cyanide-based clusters as a source of the barrier for reversal magnetization. We consider the Mn(III)-CN-Mn(II) dimer and linear Mn(II)-NC-Mn(III)-CN-Mn(II) trimer containing octahedrally coordinated Mn(III) and Mn(II) ions with special emphasis on the magnetic manifestations of the orbital degeneracy of the Mn(III) ion. The kinetic exchange mechanism involves the electron transfer from the single occupied t(2) orbitals of the Mn(II) ion [6A1(t2(3)e2) ground state] to the singly occupied t(2) orbitals of the Mn(III) ion [3T1(t2(4)) ground state] resulting in the charge-transfer 5T2(t2(2)e2)Mn(III) - 2T2(t2(5))Mn(II) state of the pair.

View Article and Find Full Text PDF

The aim of this communication is to probe the possibility of increasing the barrier for reversal of magnetization in the family of new cyano-bridged pentanuclear Mn(III)2Mn(II)3 clusters in which single molecule magnet behavior has been recently discovered. In this context, we analyze the global magnetic anisotropy arising from the unquenched orbital angular momenta of ground terms (3)T1(t2(4)) of the two apical Mn(III) ions. The model takes into account the trigonal component of the crystal field, spin-orbit interaction in (3)T1(t2(4)), and an isotropic exchange interaction between Mn(III) and Mn(II) ions.

View Article and Find Full Text PDF

We report a new theoretical model that accounts for the unusual magnetic properties of the cyanide cluster ([MnII(tmphen)2]3[MnIII(CN)6]2) (tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline). The model takes into account (1) the spin-orbit interaction, (2) the trigonal component of the crystal field acting on the ground-state cubic (3)T(1) terms of the apical Mn(III) ions, and (3) the isotropic contribution to the exchange interaction between Mn(III) and Mn(II) ions. The ground state of the cluster was shown to be the state with the total angular momentum projection |M(J)| = 15/2; the energies of the low-lying levels obtained from this treatment increase with decreasing |M(J)| values, a situation that leads to a barrier for the reversal of magnetization (U(eff) approximately 30 cm(-1)).

View Article and Find Full Text PDF