We developed an on-slide decellularization approach to generate acellular extracellular matrix (ECM) myoscaffolds that can be repopulated with various cell types to interrogate cell-ECM interactions. Using this platform, we investigated whether fibrotic ECM scarring affected human skeletal muscle progenitor cell (SMPC) functions that are essential for myoregeneration. SMPCs exhibited robust adhesion, motility, and differentiation on healthy muscle-derived myoscaffolds.
View Article and Find Full Text PDFMaintaining nuclear integrity is essential to cell survival when exposed to mechanical stress. Herpesviruses, like most DNA and some RNA viruses, put strain on the nuclear envelope as hundreds of viral DNA genomes replicate and viral capsids assemble. It remained unknown, however, how nuclear mechanics is affected at the initial stage of herpesvirus infection-immediately after viral genomes are ejected into the nuclear space-and how nucleus integrity is maintained despite an increased strain on the nuclear envelope.
View Article and Find Full Text PDFInvasion by cancer cells is a crucial step in metastasis. An oversimplified view in the literature is that cancer cells become more deformable as they become more invasive. β-adrenergic receptor (βAR) signaling drives invasion and metastasis, but the effects on cell deformability are not known.
View Article and Find Full Text PDFMetastasis is a fundamentally physical process in which cells are required to deform through narrow gaps as they invade surrounding tissues and transit to distant sites. In many cancers, more invasive cells are more deformable than less invasive cells, but the extent to which mechanical phenotype, or mechanotype, can predict disease aggressiveness in pancreatic ductal adenocarcinoma (PDAC) remains unclear. Here we investigate the invasive potential and mechanical properties of immortalized PDAC cell lines derived from primary tumors and a secondary metastatic site, as well as noncancerous pancreatic ductal cells.
View Article and Find Full Text PDFPhase transitions in purple membrane have been a topic of debate for the past two decades. In this work we present studies of a reversible transition of purple membrane in the 50-60 °C range in zeptoliter volumes under different heating regimes (global heating and local heating). The temperature of the reversible phase transition is 52 ± 5 °C for both local and global heating, supporting the hypothesis that this transition is mainly due to a structural rearrangement of bR molecules and trimers.
View Article and Find Full Text PDFElectromechanical coupling is ubiquitous in biological systems, with examples ranging from simple piezoelectricity in calcified and connective tissues to voltage-gated ion channels, energy storage in mitochondria, and electromechanical activity in cardiac myocytes and outer hair cell stereocilia. Piezoresponse force microscopy (PFM) originally emerged as a technique to study electromechanical phenomena in ferroelectric materials, and in recent years has been employed to study a broad range of non-ferroelectric polar materials, including piezoelectric biomaterials. At the same time, the technique has been extended from ambient to liquid imaging on model ferroelectric systems.
View Article and Find Full Text PDFFormulating effective coatings for use in nano- and biotechnology poses considerable technical challenges. If they are to provide abrasion resistance, coatings must be hard and adhere well to the underlying substrate. High hardness, however, comes at the expense of extensibility.
View Article and Find Full Text PDF