Gemcitabine is the first-line treatment option for patients with locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). However, the frequent adoption of resistance to gemcitabine by cancer cells poses a significant challenge in treating this aggressive disease. In this study, we focused on analyzing the role of trefoil factor 1 (TFF1) in gemcitabine resistance in PDAC.
View Article and Find Full Text PDFAberrantly expressed onco-mucin 16 (MUC16) and its post-cleavage generated surface tethered carboxy-terminal (MUC16-Cter) domain are strongly associated with poor prognosis and lethality of pancreatic (PC) and non-small cell lung cancer (NSCLC). To date, most anti-MUC16 antibodies are directed towards the extracellular domain of MUC16 (CA125), which is usually cleaved and shed in the circulation hence obscuring antibody accessibility to the cancer cells. Herein, we establish the utility of targeting a post-cleavage generated, surface-tethered oncogenic MUC16 carboxy-terminal (MUC16-Cter) domain by using a novel chimeric antibody in human IgG1 format, ch5E6, whose epitope expression directly correlates with disease severity in both cancers.
View Article and Find Full Text PDFPurpose: Despite the significant association of molecular subtypes with poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC), few efforts have been made to identify the underlying pathway(s) responsible for this prognosis. Identifying a clinically relevant prognosis-based gene signature may be the key to improving patient outcomes.
Experimental Design: We analyzed the transcriptomic profiles of treatment-naïve surgically resected short-term survivor (STS) and long-term survivor (LTS) tumors (GSE62452) for expression and survival, followed by validation in several datasets.
Pancreatic cancer (PC) is a highly lethal malignancy with a 5-year survival rate of 10%. The occurrence of metastasis, among other hallmarks, is the main contributor to its poor prognosis. Consequently, the elucidation of metastatic genes involved in the aggressive nature of the disease and its poor prognosis will result in the development of new treatment modalities for improved management of PC.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
April 2020
Trefoil factors 1, 2, and 3 (TFFs) are a family of small secretory molecules involved in the protection and repair of the gastrointestinal tract (GI). TFFs maintain and restore epithelial structural integrity via transducing key signaling pathways for epithelial cell migration, proliferation, and invasion. In recent years, TFFs have emerged as key players in the pathogenesis of multiple diseases, especially cancer.
View Article and Find Full Text PDF