Publications by authors named "Sophia C Hayes"

Conformational templating of conjugated polyelectrolytes with single-stranded DNAs (ssDNAs) has the prospect of tailoring excited state dynamics for specific optoelectronic applications. We use ultrafast time-resolved infrared spectroscopy to study the photophysics of a cationic polythiophene assembled with different ssDNAs, inducing distinct conformations (flexible disordered structures vs more rigid complexes with increased backbone planarity). Intrachain polarons are always produced upon selective excitation of the polymer, the extent being dependent on backbone torsional order.

View Article and Find Full Text PDF

Organometallic molecules offer some of the most promising scaffolds for interaction with G-quadruplex nucleic acids. We report the efficient synthesis of a family of organoplatinum(II) complexes, featuring a 2-([2,2'-bipyridin]-6-yl)phenyl tridentate (N N C) ligand, that incorporates peripheral side-chains aiming at enhancing and diversifying its interaction capabilities. These include a di-isopropyl carbamoyl amide, a morpholine ethylenamide, two enantiomeric proline imides and an oxazole.

View Article and Find Full Text PDF

A promising approach to influence and control the photophysical properties of conjugated polymers is directing their molecular conformation by templating. We explore here the templating effect of single-stranded DNA oligomers (ssDNAs) on cationic polythiophenes with the goal to uncover the intermolecular interactions that direct the polymer backbone conformation. We have comprehensively characterized the optical behavior and structure of the polythiophenes in conformationally distinct complexes depending on the sequence of nucleic bases and addressed the effect on the ultrafast excited-state relaxation.

View Article and Find Full Text PDF

It has long been of interest to identify the phenotypic traits that mediate reproductive isolation between related species, and more recently, the genes that underpin them. Much work has focused on identifying genes associated with animal colour, with the candidate gene CYP2J19 identified in laboratory studies as the ketolase converting yellow dietary carotenoids to red ketocarotenoids in birds with red pigments. However, evidence that CYP2J19 explains variation between red and yellow feather coloration in wild populations of birds is lacking.

View Article and Find Full Text PDF

Perylene bisimides (PBIs) are dyes known for combining high absorption and emission in the visible region with thermal and photochemical stability. H-bond-directed aggregation driven by free imide groups has been reported to promote the uncommon J-type aggregate formation of PBIs. J-aggregates are highly desired thanks to their bathochromically shifted narrow absorption and fluorescence due to excitonic coupling, together with hyperchromicity and superradiance compared to the monomer.

View Article and Find Full Text PDF

We report here the photophysical properties of a water-soluble conjugated polythiophene with cationic side-chains. When dissolved in aqueous buffer solution (PBS, phosphate buffered saline), there is ordering of the polymer chains due to the presence of the salts, in contrast to pure water, where a random-coil conformation is adopted at room temperature. The ordering leads to a pronounced colour change of the solution (the absorption maximum shifts from 400 nm to 525 nm).

View Article and Find Full Text PDF

The specific optical absorption of an organic semiconductor is critical to the performance of organic optoelectronic devices. For example, higher light-harvesting efficiency can lead to higher photocurrent in solar cells that are limited by sub-optimal electrical transport. Here, we compare over 40 conjugated polymers, and find that many different chemical structures share an apparent maximum in their extinction coefficients.

View Article and Find Full Text PDF

Tetraphenylhexaazaanthracene (TPHA), a fluorescent zwitterionic biscyanine with a closed-shell singlet ground state, on treatment with manganese dioxide or phenyliodine bis(trifluoroacetate) (PIFA), undergoes oxidative dimerization to give a near-zero dipole scissor 5,5'-dimer DI-TPHA. Both acene components of the new dimer DI-TPHA maintain their biscyanine closed-shell singlet ground state motifs, as judged by analysis of both single crystal X-ray crystallographic and density functional theory computational studies; however, unlike TPHA, DI-TPHA is only very weakly fluorescent.

View Article and Find Full Text PDF

Tetraphenylhexaazaanthracene, TPHA-1, is a fluorescent zwitterionic biscyanine with a closed-shell singlet ground state. TPHA-1 overcomes its weak 16π antiaromaticity by partitioning its π system into 6π positive and 10π negative cyanines. The synthesis of TPHA-1 is low yielding and accompanied by two analogous TPHA isomers: the deep red, non-charge-separated, quinoidal TPHA-2, and the deep green TPHA-3 that partitions into two equal but oppositely charged 8π cyanines.

View Article and Find Full Text PDF

In polymeric semiconductors, charge carriers are polarons, which means that the excess charge deforms the molecular structure of the polymer chain that hosts it. This results in distinctive signatures in the vibrational modes of the polymer. Here, we probe polaron photogeneration dynamics at polymer:fullerene heterojunctions by monitoring its time-resolved resonance-Raman spectrum following ultrafast photoexcitation.

View Article and Find Full Text PDF

A detailed analysis of the resonance Raman depolarization ratio dispersion curve for the N-O symmetric stretch of nitryl chloride in methanol at excitation wavelengths spanning the D absorption band is presented. The depolarization ratios are modeled using the time-dependent formalism for Raman scattering with contributions from two excited states (2(1)A1 and 3(1)B1), which are taken as linearly dissociative along the Cl-N coordinate. The analysis focuses on the interplay between different types of broadening revealing the importance of inhomogenous broadening in determining the relative contributions of the two electronic transitions.

View Article and Find Full Text PDF

Resonance Raman (RR) spectroscopy is used to investigate the effect of β-cyclodextrin encapsulation on the structural and photophysical properties of poly(4,4'-diphenylenevinylene). We especially focus on the thermal stability of the polymer. We find that within the range of 10-55 °C the uninsulated polymer exhibits decreased Raman intensity in all the vibrational bands with temperature, along with changes in the relative intensity of the C-C inter-ring stretch mode at 1270 cm(-1) with respect to the ring C-H in-plane symmetric bend at 1187 cm(-1), which provides evidence for conformational changes as a function of temperature.

View Article and Find Full Text PDF

Halogens such as chlorine are converted from halides, including ClNO(2), to reactive radicals by UV solar radiation. These radicals can affect ozone production and destruction in the stratosphere. Recently, it became clear that halogen radicals can also play a significant role in the chemistry of the troposphere.

View Article and Find Full Text PDF

We present ultrafast transient absorption spectra of two oligofluorene derivatives in dilute solution. These spectra display a photoinduced absorption band with clear vibronic structure, which we analyze rigorously using a time-dependent formalism of absorption to extract the principal excited-state vibrational normal-mode frequencies that couple to the electronic transition, the configurational displacement of the higher-lying excited state, and the reorganization energies. We can model the excited-state absorption spectrum using two totally symmetric vibrational modes with frequencies 450 (dimer) or 400 cm(-1) (trimer), and 1666 cm(-1).

View Article and Find Full Text PDF

The 11-residue peptide fragment from transthyretin (TTR(105-115)) has been investigated using UV resonance Raman spectroscopy. Excitation at 239.5 nm reveals selective enhancement of scattering from two Tyr residues.

View Article and Find Full Text PDF

Ultrafast time-resolved infrared absorption studies of aqueous chlorine dioxide (OClO) photochemistry are reported. Following photoexcitation at 401 nm, the evolution in optical density at frequencies between 1000 to 1100 cm(-1) is monitored to investigate vibrational energy deposition and relaxation along the asymmetric-stretch coordinate following the reformation of ground-state OClO via geminate recombination of the primary photofragments. The measured kinetics are compared to two proposed models for the vibrational-relaxation dynamics along the asymmetric-stretch coordinate.

View Article and Find Full Text PDF