Cortical projections to the caudomedial frontal cortex were studied using retrograde tracers in marmosets. We tested the hypothesis that cytoarchitectural area 6M includes homologues of the supplementary and pre-supplementary motor areas (SMA and pre-SMA) of other primates. We found that, irrespective of the injection sites' location within 6M, over half of the labeled neurons were located in motor and premotor areas.
View Article and Find Full Text PDFThe projections from the claustrum to cortical areas within and adjacent to the superior parietal lobule were studied in 10 macaque monkeys, using retrograde tracers, computerized reconstructions, and quantitative methods. In contrast with the classical view that posterior parietal areas receive afferents primarily from the dorsal and posterior regions of the claustrum, we found that these areas receive more extensive projections, including substantial afferents from the anterior and ventral regions of the claustrum. Moreover, our findings uncover a previously unsuspected variability in the precise regions of the claustrum that originate the projections, according to the target areas.
View Article and Find Full Text PDFUnderstanding the principles of neuronal connectivity requires tools for efficient quantification and visualization of large datasets. The primate cortex is particularly challenging due to its complex mosaic of areas, which in many cases lack clear boundaries. Here, we introduce a resource that allows exploration of results of 143 retrograde tracer injections in the marmoset neocortex.
View Article and Find Full Text PDFWe studied the thalamic afferents to cortical areas in the precuneus using injections of retrograde fluorescent neuronal tracers in four male macaques (Macaca fascicularis). Six injections were within the limits of cytoarchitectural area PGm, one in area 31 and one in area PEci. Precuneate areas shared strong input from the posterior thalamus (lateral posterior nucleus and pulvinar complex) and moderate input from the medial, lateral, and intralaminar thalamic regions.
View Article and Find Full Text PDFThe boundaries of the visual areas located anterior to V2 in the dorsomedial region of the macaque cortex remain contentious. This region is usually conceptualized as including two functional subdivisions: the dorsal component of area V3 (V3d) laterally and another area named the parietooccipital area (PO) or V6 medially. However, the nature of the putative border between V3d and PO/V6 has remained undefined.
View Article and Find Full Text PDFFront Neural Circuits
January 2020
The posterior parietal cortex (PPC) of humans and non-human primates plays a key role in the sensory and motor transformations required to guide motor actions to objects of interest in the environment. Despite decades of research, the anatomical and functional organization of this region is still a matter of contention. It is generally accepted that specialized parietal subregions and their functional counterparts in the frontal cortex participate in distinct segregated networks related to eye, arm and hand movements.
View Article and Find Full Text PDFArea 10, located in the frontal pole, is a unique specialization of the primate cortex. We studied the cortical connections of area 10 in the New World Cebus monkey, using injections of retrograde tracers in different parts of this area. We found that injections throughout area 10 labeled neurons in a consistent set of areas in the dorsolateral, ventrolateral, orbital, and medial parts of the frontal cortex, superior temporal association cortex, and posterior cingulate/retrosplenial region.
View Article and Find Full Text PDFThe parietal reach region (PRR) in the medial bank of the macaque intraparietal sulcus has been a subject of considerable interest in research aimed at the development of brain-controlled prosthetic arms, but its anatomical organization remains poorly characterized. We examined the anatomical organization of the putative PRR territory based on myeloarchitecture and retrograde tracer injections. We found that the medial bank includes three areas: an extension of the dorsal subdivision of V6A (V6Ad), the medial intraparietal area (MIP), and a subdivision of area PE (PEip).
View Article and Find Full Text PDFWe report on the corticocortical connections of areas on the mesial surface of the macaque posterior parietal cortex, based on 10 retrograde tracer injections targeting different parts of the precuneate gyrus. Analysis of afferent connections supported the existence of two areas: PGm (also known as 7 m) and area 31. Both areas received major afferents from the V6A complex and from the external subdivision of area 23, but they differed in most other aspects.
View Article and Find Full Text PDFThe exposed surface of the primate superior parietal cortex includes two cytoarchitectonically defined areas, the PEc and PE. In the present study we describe the distribution of neurons projecting from the claustrum to these areas. Retrograde neuronal tracers were injected by direct visualization of regions of interest, and the location of injection sites was reconstructed relative to cytoarchitectural borders.
View Article and Find Full Text PDFThe medial posterior parietal cortex of the primate brain includes different functional areas, which have been defined based on the functional properties, cyto- and myeloarchitectural criteria, and cortico-cortical connections. Here, we describe the thalamic projections to two of these areas (V6 and V6A), based on 14 retrograde neuronal tracer injections in 11 hemispheres of 9 Macaca fascicularis. The injections were placed either by direct visualisation or using electrophysiological guidance, and the location of injection sites was determined post mortem based on cyto- and myeloarchitectural criteria.
View Article and Find Full Text PDFWe studied the afferent connections of two cytoarchitectural subdivisions of the caudolateral frontal cortex, areas 6Va and 8C, in marmoset monkeys. These areas received connections from the same set of thalamic nuclei, including main inputs from the ventral lateral and ventral anterior complexes, but differed in their patterns of corticocortical connections. Areas 8C and 6Va had reciprocal interconnections, and received similar proportions of afferents from premotor areas 6M and 6DC, and from the prefrontal cortex.
View Article and Find Full Text PDFPrecise descriptions of the anatomical pathways that link different areas of the cerebral cortex are essential to the understanding of the sensorimotor and association processes that underlie human actions, and their impairment in pathological situations. Many years of research in macaque monkeys have critically shaped how we currently think about cortical motor function in humans. However, it is important to obtain additional understanding about the homologies between cortical areas in human and various non-human primates, and in particular how evolutionary changes in connectivity within specific neural circuits impact on the capacity for different behaviors.
View Article and Find Full Text PDFCorticocortical projections to the caudal and rostral areas of dorsal premotor cortex (6DC and 6DR, also known as F2 and F7) were studied in the marmoset monkey. Both areas received their main thalamic inputs from the ventral anterior and ventral lateral complexes, and received dense projections from the medial premotor cortex. However, there were marked differences in their connections with other cortical areas.
View Article and Find Full Text PDFTo determine whether the periarcuate frontal cortex spatially encodes visual and oculomotor parameters, we trained monkeys to repeatedly execute saccades of the same amplitude and direction toward visual targets and we obtained quantitative images of the distribution of metabolic activity in 2D flattened reconstructions of the arcuate sulcus (As) and prearcuate convexity. We found two topographic maps of contraversive saccades to visual targets, separated by a region representing the vertical meridian: the first region straddled the fundus of the As and occupied areas 44 and 6-ventral, whereas the second one occupied areas 8A and 45 in the anterior bank of the As and the prearcuate convexity. The representation of the vertical meridian runs along the posterior borders of areas 8A and 45 (deep in the As).
View Article and Find Full Text PDFIn primates the primary motor cortex (M1) forms a topographic map of the body, whereby neurons in the medial part of this area control movements involving trunk and hindlimb muscles, those in the intermediate part control movements involving forelimb muscles, and those in the lateral part control movements of facial and other head muscles. This topography is accompanied by changes in cytoarchitectural characteristics, raising the question of whether the anatomical connections also vary between different parts of M1. To address this issue, we compared the patterns of cortical afferents revealed by retrograde tracer injections in different locations within M1 of marmoset monkeys.
View Article and Find Full Text PDFIn macaques, superior parietal lobule area 5 has been described as occupying an extensive region, which includes the caudal half of the postcentral convexity as well as the medial bank of the intraparietal sulcus. Modern neuroanatomical methods have allowed the identification of various areas within this region. In the present study, we investigated the corticocortical afferent projections of one of these subdivisions, area PE.
View Article and Find Full Text PDFThe goal of the present study was to elucidate the corticocortical afferent connections of area V6Av, the ventral subregion of area V6A, using retrograde neuronal tracers combined with physiological and cytoarchitectonic analyses in the macaque monkey. The results revealed that V6Av receives many of its afferents from extrastriate area V6, and from regions of areas V2, V3, and V4 subserving peripheral vision. Additional extrastriate visual projections originate in dorsal stream areas MT and MST.
View Article and Find Full Text PDFThe cortical projections to the caudal part of the superior parietal lobule (area PEc) were studied in 6 cynomolgus monkeys using fluorescence tracers. Significant numbers of labeled cells were found in a restricted network of parietal, mesial, and frontal areas. Quantitative analysis demonstrated that approximately 30% of the total projection neurons originated in the adjacent areas of the dorsocaudal part of the superior parietal lobule (areas PE and V6A).
View Article and Find Full Text PDFThe lateral intraparietal area (LIP) of monkeys is known to participate in the guidance of rapid eye movements (saccades), but the means it uses to specify movement variables are poorly understood. To determine whether area LIP devotes neural space to encode saccade metrics spatially, we used the quantitative [(14)C]deoxyglucose method to obtain images of the distribution of metabolic activity in the intraparietal sulcus (IPs) of rhesus monkeys trained to repeatedly execute saccades of the same amplitude and direction for the duration of the experiment. Different monkeys were trained to perform saccades of different sizes and in different directions.
View Article and Find Full Text PDFArea V6A, a functionally defined region in the anterior bank of the parietooccipital sulcus, has been subdivided into dorsal and ventral cytoarchitectonic fields (V6Ad and V6Av). The aim of this study was to define the cortical connections of the cytoarchitectonic field V6Ad. Retrograde and bidirectional neuronal tracers were injected into the dorsal part of the anterior bank of parietooccipital sulcus of seven macaque monkeys (Macaca fascicularis).
View Article and Find Full Text PDFAlthough the role of the motion complex [cortical areas middle temporal (V5/MT), medial superior temporal (MST), and fundus of the superior temporal (FST)] in visual motion and smooth-pursuit eye movements is well understood, little is known about its involvement in rapid eye movements (saccades). To address this issue, we used the quantitative 14C-deoxyglucose method to obtain functional maps of the cerebral cortex lying in the superior temporal sulcus of rhesus monkeys executing saccades to visual targets and saccades to memorized targets in complete darkness. Fixational effects were observed in MT-foveal, FST, the anterior part of V4-transitional (V4t), and temporal-occipital areas.
View Article and Find Full Text PDF