Publications by authors named "Sooyeon Shim"

Given a graph dataset, how can we generate meaningful graph representations that maximize classification accuracy? Learning representative graph embeddings is important for solving various real-world graph-based tasks. Graph contrastive learning aims to learn representations of graphs by capturing the relationship between the original graph and the augmented graph. However, previous contrastive learning methods neither capture semantic information within graphs nor consider both nodes and graphs while learning graph embeddings.

View Article and Find Full Text PDF

How can we interpret predictions of a workload classification model? A workload is a sequence of operations executed in DRAM, where each operation contains a command and an address. Classifying a given sequence into a correct workload type is important for verifying the quality of DRAM. Although a previous model achieves a reasonable accuracy on workload classification, it is challenging to interpret the prediction results since it is a black box model.

View Article and Find Full Text PDF