Introduction: Dry skin is a hallmark of impaired skin barrier function. Moisturizers are a mainstay of treatment to help the skin retain moisture, and there is a high consumer demand for effective products. However, the development and optimization of new formulations are hampered due to lack of reliable efficacy measures using in vitro models.
View Article and Find Full Text PDFIdentification of a novel post-translational modification (PTM) for a target protein, defining its physiologic role, and studying its potential crosstalk with other PTMs is a challenging process. A set of highly sensitive tools termed Signal-Seeker kits was developed, which enables rapid and simple detection of post-translational modifications on any target protein. The methodology for these tools utilizes affinity purification of modified proteins from a cell or tissue lysate and immunoblot analysis.
View Article and Find Full Text PDFA set of high-affinity, high-specificity posttranslational modification (PTM) enrichment tools was developed to generate an unbiased snapshot of four key PTM profiles (tyrosine phosphorylation, acetylation, ubiquitination, and SUMOylation 2/3) for the clinically important protein programmed cell death ligand 1 (PD-L1). The results showed that epidermal growth factor (EGF) treatment induced tyrosine phosphorylation, acetylation, and ubiquitination of PD-L1. Further characterization of EGF-induced PD-L1 ubiquitination revealed a significant increase in mono- and multiubiquitination of PD-L1 that occurred on glycosylated PD-L1.
View Article and Find Full Text PDFThe function of the actin-binding domain of α-catenin, αABD, including its possible role in the direct anchorage of the cadherin-catenin complex to the actin cytoskeleton, has remained uncertain. We identified two point mutations on the αABD surface that interfere with αABD binding to actin and used them to probe the role of α-catenin-actin interactions in adherens junctions. We found that the junctions directly bound to actin via αABD were more dynamic than the junctions bound to actin indirectly through vinculin and that recombinant αABD interacted with cortical actin but not with actin bundles.
View Article and Find Full Text PDFThe mechanism that coordinates activities of different adhesion receptors is poorly understood. We investigated this mechanism by focusing on the nectin-2 and E-cadherin adherens junction receptors. We found that, cadherin was not required for the basic process of nectin junction formation because nectin-2 formed junctions in cadherin-deficient A431D cells.
View Article and Find Full Text PDFCadherin and nectin are distinct transmembrane proteins of adherens junctions. Their ectodomains mediate adhesion, whereas their cytosolic regions couple the adhesive contact to the cytoskeleton. Both these proteins are essential for adherens junction formation and maintenance.
View Article and Find Full Text PDFThe cadherin extracellular region produces intercellular adhesion clusters through trans- and cis-intercadherin bonds, and the intracellular region connects these clusters to the cytoskeleton. To elucidate the interdependence of these binding events, cadherin adhesion was reconstructed from the minimal number of structural elements. F-actin-uncoupled adhesive clusters displayed high instability and random motion.
View Article and Find Full Text PDFNat Struct Mol Biol
September 2012
Nectins are immunoglobulin superfamily glycoproteins that mediate intercellular adhesion in many vertebrate tissues. Homophilic and heterophilic interactions between nectin family members help mediate tissue patterning. We determined the homophilic binding affinities and heterophilic specificities of all four nectins and the related protein nectin-like 5 (Necl-5) from human and mouse, revealing a range of homophilic interaction strengths and a defined heterophilic specificity pattern.
View Article and Find Full Text PDFThe plasticity of cell-cell adhesive structures is crucial to all normal and pathological morphogenetic processes. The molecular principles of this plasticity remain unknown. Here we study the roles of two dimerization interfaces, the so-called strand-swap and X dimer interfaces of E-cadherin, in the dynamic remodeling of adherens junctions using photoactivation, calcium switch, and coimmunoprecipitation assays.
View Article and Find Full Text PDFAdherens junctions, which play a central role in intercellular adhesion, comprise clusters of type I classical cadherins that bind via extracellular domains extended from opposing cell surfaces. We show that a molecular layer seen in crystal structures of E- and N-cadherin ectodomains reported here and in a previous C-cadherin structure corresponds to the extracellular architecture of adherens junctions. In all three ectodomain crystals, cadherins dimerize through a trans adhesive interface and are connected by a second, cis, interface.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2010
The homeostasis of adherens junctions was studied using E-cadherin and its two mutants tagged by the photoconvertible protein Dendra2 in epithelial A-431 cells and in CHO cells lacking endogenous cadherin. The first mutant contained point mutations of two elements, Lys738 and the dileucine motif that suppressed cadherin endocytosis. The second mutant contained, in addition, an extensive truncation that uncoupled the mutant from beta-catenin and p120.
View Article and Find Full Text PDFThe cell adhesion process and the molecular interactions that determine its kinetics were investigated using a thickness shear mode (TSM) sensor. The goal of this study was to correlate sensor readings with the progression of cell adhesion. In particular, the specific effects of receptor-mediated adhesion, the glycocalyx, and surface charge on initial cell-surface attachment and steady-state adhesion of endothelial cells were investigated.
View Article and Find Full Text PDF