Publications by authors named "Soonjae Pyo"

Porous structures have been utilized in tactile sensors to improve sensitivity owing to their excellent deformability. Recently, tactile sensors using porous structures have been used in practical applications, such as bio-signal monitoring. However, highly sensitive responses are limited to the low-pressure range, and their sensitivity significantly decreases in a higher-pressure range.

View Article and Find Full Text PDF

While there have been remarkable improvements in the fabrication of suspended nanowires, placing a single nanowire at the desired location remains to be a challenging task. In this study, a simple method is proposed to fabricate suspended nanowires at desired locations using an electrospinning process and a designed microstructure. Using electrospun polymer fibers on the designed microstructure as a sacrificial template, various materials are deposited on it, and the electrospun fibers are selectively removed, leaving only nanowires of the deposited material.

View Article and Find Full Text PDF

Flexible tactile sensors capable of measuring mechanical stimuli via physical contact have attracted significant attention in the field of human-interactive systems. The utilization of tactile information can complement vision and/or sound interaction and provide new functionalities. Recent advancements in micro/nanotechnology, material science, and information technology have resulted in the development of high-performance tactile sensors that reach and even surpass the tactile sensing ability of human skin.

View Article and Find Full Text PDF

Tactile sensor arrays have attracted considerable attention for their use in diverse applications, such as advanced robotics and interactive human-machine interfaces. However, conventional tactile sensor arrays suffer from electrical crosstalk caused by current leakages between the tactile cells. The approaches that have been proposed thus far to overcome this issue require complex rectifier circuits or a serial fabrication process.

View Article and Find Full Text PDF

Two-dimensional (2D) nanomaterials have been extensively explored as promising candidates for gas sensing due to their high surface-to-volume ratio. Among many 2D nanomaterials, molybdenum disulfide (MoS) is known to be functional in detecting harmful gases at room temperature; therefore, it has been actively studied as a gas sensing material. However, there has been a limitation in recovering the original signal from reacted MoS after exposure to the target gas.

View Article and Find Full Text PDF

Ionization-based volatile organic compound (VOC) sensors that use photons or electrons operating at room temperature have attracted considerable attention as a promising alternative to conventional metal oxide-based sensors that require high temperature for sensing function. However, the photoionization sensors cannot ionize many gas species for their limited photon energy, and field emission-based ionization sensors that rely on the breakdown voltage of specific gas species in a pure state may not tell different concentration. This work demonstrates the detection of VOCs using impact ionization induced by accelerated photoelectrons.

View Article and Find Full Text PDF

Micro-/nanoelectromechanical (MEM/NEM) switches have been extensively studied to address the limitations of transistors, such as the increased standby power consumption and performance dependence on temperature and radiation. However, their lifetimes are limited owing to the degradation of the contact surfaces. Even though several materials and structural designs have been recently developed to improve the lifetime, the production of a microswitch that is compatible with a complementary metal-oxide semiconductor (CMOS) with a long lifetime remains a significant challenge.

View Article and Find Full Text PDF

We present a triboelectric energy harvester fabricated with a simple electrospinning process of polyvinylidene fluoride/polyurethane polymers on conductive fabric. This electrospinning process provides higher electrical power output and hydrophobicity driven humidity resistance compared to flat polymer energy harvesters. By using conductive fabric as collector and electrode, the device could retain air permeability and flexibility.

View Article and Find Full Text PDF

Although there have been remarkable improvements in stretchable strain sensors, the development of strain sensors with scalable fabrication techniques and which both high sensitivity and stretchability simultaneously is still challenging. In this work, a stretchable strain sensor based on overlapped carbon nanotube (CNT) bundles coupled with a silicone elastomer is presented. The strain sensor with overlapped CNTs is prepared by synthesizing line-patterned vertically aligned CNT bundles and rolling and transferring them to the silicone elastomer.

View Article and Find Full Text PDF

The functionalization of graphene with organic molecules is beneficial for the realization of high-performance graphene sensors because functionalization can provide enhanced functionalities beyond the properties of pristine graphene. Although various types of sensors based on organic-graphene hybrids have been developed, the functionalization processes have poor thickness-controllability/reliability or require post-processing, and sensor applications rely on conventional, rigid substrates such as SiO/Si. Here, a flexible and transparent metalloporphyrin (MPP)-graphene hybrid for sensitive UV detection and chemical sensing is demonstrated.

View Article and Find Full Text PDF

We demonstrate a highly sensitive force sensor based on self-adjusting carbon nanotube (CNT) arrays. Aligned CNT arrays are directly synthesized on silicon microstructures by a space-confined growth technique which enables a facile self-adjusting contact. To afford flexibility and softness, the patterned microstructures with the integrated CNTs are embedded in polydimethylsiloxane structures.

View Article and Find Full Text PDF

Low-dimensional carbon materials, such as semiconducting carbon nanotubes (CNTs), conducting graphene, and their hybrids, are of great interest as promising candidates for flexible, foldable, and transparent electronics. However, the development of highly photoresponsive, flexible, and transparent optoelectronics still remains limited due to their low absorbance and fast recombination rate of photoexcited charges, despite the considerable potential of photodetectors for future wearable and foldable devices. This work demonstrates a heterogeneous, all-carbon photodetector composed of graphene electrodes and porphyrin-interfaced single-walled CNTs (SWNTs) channel, exhibiting high photoresponse, flexibility, and full transparency across the device.

View Article and Find Full Text PDF

A novel carbon nanotube (CNT)-based flexible strain sensor with the highest gauge factor of 4739 is presented. CNT-to-CNT contacts are fabricated on a pair of silicon electrodes fixed on a PDMS specimen for both flexibility and electrical connection. The strain is detected by the resistance change between facing CNT bundles.

View Article and Find Full Text PDF

A polymer membrane-coated palladium (Pd) nanoparticle (NP)/single-layer graphene (SLG) hybrid sensor was fabricated for highly sensitive hydrogen gas (H2) sensing with gas selectivity. Pd NPs were deposited on SLG via the galvanic displacement reaction between graphene-buffered copper (Cu) and Pd ion. During the galvanic displacement reaction, graphene was used as a buffer layer, which transports electrons from Cu for Pd to nucleate on the SLG surface.

View Article and Find Full Text PDF