Background: Postoperative sore throat (POST) is a complication that decreases patient satisfaction and increases postoperative complaints. The present study was conducted to investigate effects of gargling with dexamethasone, intravenous dexamethasone injection and the combination of the two on the incidence and severity of POST.
Methods: Study participants were 96 patients who had undergone laparoscopic cholecystectomy, randomly allocated into three groups.
Background: Carcinoma-associated fibroblasts (CAFs) contribute to carcinogenesis and cancer progression, although their origin and role remain unclear. We recently identified and investigated the in situ identity and implications of gastric submucosa-resident mesenchymal stem cells (GS-MSCs) in the progression of gastric carcinogenesis.
Methods: We isolated GS-MSCs from gastric submucosa using hydrogel-supported organ culture and defined their identity.
Mesenchymal stem cells (MSCs) have been discovered in a multitude of organs, but their distribution and identity are still uncertain. Furthermore, loose connective tissue (LCT) is dispersed throughout virtually all organs, but its biological role in tissue homeostasis is unclear. Here, we describe a unique organ culture system to explore the omnipresence and in situ identity of MSCs among the LCTs.
View Article and Find Full Text PDFConventional systems for isolating adipose-derived stem cells (ASC) require enzymatic digestion of adipose tissue (AT), followed by monolayer culture to the enrich the stem cell population. However, these systems are hindered by low cell yields and a lack of reproducibility. The present study was aimed at developing a unique strategy for isolating ASC based on fibrin matrix-supported three-dimensional (3-D) organ culture of native AT.
View Article and Find Full Text PDFIn spite of the advances in the knowledge of adipose-derived stem cells (ASCs), in situ location of ASCs and the niche component of adipose tissue (AT) remain controversial due to the lack of an appropriate culture system. Here we describe a fibrin matrix-supported three-dimensional (3D) organ culture system for AT which sustains the ASC niche and allows for in situ mobilization and expansion of ASCs in vitro. AT fragments were completely encapsulated within the fibrin matrix and cultured under dynamic condition.
View Article and Find Full Text PDF