Oxidation of dopamine can cause various side effects, which ultimately leads to cell death and contributes to Parkinson's disease (PD). To counteract dopamine oxidation, newly synthesized dopamine is quickly transported into vesicles via vesicular monoamine transporter 2 (VMAT2) for storage. VMAT2 expression is reduced in patients with PD, and studies have shown increased accumulation of dopamine oxidation byproducts and α-synuclein in animals with low VMAT2 expression.
View Article and Find Full Text PDFThe importance of vesicular monoamine transporter 2 (VMAT2) in dopamine regulation, which is considered crucial for neuropsychiatric disorders, is currently being studied. Moreover, the development of disease treatments using histone deacetylase (HDAC) inhibitors (HDACi) is actively progressing in various fields. Recently, research on the possibility of regulating neuropsychiatric disorders has been conducted.
View Article and Find Full Text PDFAminoacyl-tRNA synthetases (ARSs) are essential enzymes that ligate amino acids to tRNAs and translate the genetic code during protein synthesis. Their function in pathogen-derived infectious diseases has been well established, which has led to the development of small molecule therapeutics. The applicability of ARS inhibitors for other human diseases, such as fibrosis, has recently been explored in the clinical setting.
View Article and Find Full Text PDFHypervalent iodine-mediated olefin functionalization provides a rapid gateway towards accessing both various heterocyclic cores and functional groups. In this regard, we have developed a Ritter-type alkene functionalization utilizing a PhI(OAc) ((diacetoxyiodo)benzene, PIDA)/Lewis acid combination in order to access isoxazoline and pyrazoline cores. Based on allyl ketone oximes and allyl ketone tosylhydrazones, we have developed an alkene oxyamidation and amido-amidation protocol en route to accessing both isoxazoline and pyrazoline cores.
View Article and Find Full Text PDFGlutaminase (GLS), which is responsible for the conversion of glutamine to glutamate, plays a vital role in up-regulating cell metabolism for tumor cell growth and is considered to be a valuable therapeutic target for cancer treatment. Based on this important function of glutaminase in cancer, several GLS inhibitors have been developed in both academia and industry. Most importantly, Calithera Biosciences Inc.
View Article and Find Full Text PDFHeat shock protein 90 (Hsp90) is a ubiquitous molecular chaperone that is responsible for the stabilization and maturation of many oncogenic proteins. Therefore, Hsp90 has emerged as an attractive target in the field of cancer chemotherapy. In this study, we report the design, synthesis, and biological evaluation of a series of Hsp90 inhibitors.
View Article and Find Full Text PDFAnacetrapib is a potent and selective CETP inhibitor and is undergoing phase III clinical trials for the treatment of dyslipidemia. A simple and sensitive high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for the quantification of anacetrapib in rat plasma was developed and validated using an easily purchasable compound, chlorpropamide, as an internal standard (IS). A minimal volume of rat plasma sample (20 μL) was prepared by a single-step deproteinization procedure with 80 μL of acetonitrile.
View Article and Find Full Text PDFThe radical S-adenosylmethionine enzyme MqnC catalyzes conversion of dehypoxanthine futalosine (DHFL) to the unique spiro compound cyclic DHFL in the futalosine pathway for menaquinone biosynthesis. This study describes the in vitro reconstitution of [4Fe-4S] cluster-dependent MqnC activity and identifies the site of abstraction of a hydrogen atom from DHFL by the adenosyl radical.
View Article and Find Full Text PDF