Publications by authors named "Soon-Mi Lim"

We describe an update to an experiment demonstrating low-field NMR spectroscopy in the undergraduate physical chemistry laboratory. A Python-based data processing and analysis protocol is developed for this experiment. The Python language is used in fillable worksheets in the notebook software JupyterLab, providing an interactive means for students to work with the measured data step by step.

View Article and Find Full Text PDF

In only a few decades, lithium-ion batteries have revolutionized technologies, enabling the proliferation of portable devices and electric vehicles, with substantial benefits for society. However, the rapid growth in technology has highlighted the ethical and environmental challenges of mining lithium, cobalt and other mineral ore resources, and the issues associated with the safe usage and non-hazardous disposal of batteries. Only a small fraction of lithium-ion batteries are recycled, further exacerbating global material supply of strategic elements.

View Article and Find Full Text PDF

Rates of NO release from synthetic dinitrosyl iron complexes (DNICs) are shown to be responsive to coordination environments about iron. The effect of biologically relevant cellular components, glutathione and histidine, on the rate of NO release from a dimeric, "Roussin's Red Ester", DNIC with bridging μ-S thioglucose ligands, SGlucRRE or [(μ-SGluc)Fe(NO)] (SGluc = 1-thio-β-d-glucose tetraacetate), was investigated. From the Griess assay and X-band EPR data, decomposition of the product from the histidine-cleaved dimer, [(SGluc)(N)Fe(NO)], generated Fe(III) and increased the NO release rate in aqueous media when compared to the intact SGlucRRE precursor.

View Article and Find Full Text PDF

Understanding cellular remodeling in response to mechanical stimuli is a critical step in elucidating mechanical activation of biochemical signaling pathways. Experimental evidence indicates that external stress-induced subcellular adaptation is accomplished through dynamic cytoskeletal reorganization. To study the interactions between subcellular structures involved in transducing mechanical signals, we combined experimental data and computational simulations to evaluate real-time mechanical adaptation of the actin cytoskeletal network.

View Article and Find Full Text PDF

In this study, dinitrosyl iron complexes (DNICs) are shown to deliver nitric oxide (NO) into the cytosol of vascular smooth muscle cells (SMCs), which play a major role in vascular relaxation and contraction. Malfunction of SMCs can lead to hypertension, asthma, and erectile dysfunction, among other disorders. For comparison of the five DNIC derivatives, the following protocols were examined: (a) the Griess assay to detect nitrite (derived from NO conversion) in the absence and presence of SMCs; (b) the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium (MTS) assay for cell viability; (c) an immunotoxicity assay to establish if DNICs stimulate immune response; and (d) a fluorometric assay to detect intracellular NO from treatment with DNICs.

View Article and Find Full Text PDF

Magnolol, a neolignan natural product with antioxidant properties, contains inherent, orthogonal, phenolic, and alkenyl reactive groups that were used in both direct thermoset synthesis, as well as the stepwise synthesis of a small library of monomers, followed by transformation into thermoset materials. Each monomer from the small library was prepared via a single step functionalization reaction of the phenolic groups of magnolol. Thermoset materials were realized through solvent-free, thiol-ene reactions, and the resulting cross-linked materials were each comprised of thioether and ester linkages, with one retaining the hydrophilic phenols from magnolol, another having the phenols protected as an acetonide, and two others incorporating the phenols into additional cross-linking sites via hydrolytically labile carbonates or stable ether linkages.

View Article and Find Full Text PDF

Both monomeric and dimeric tetraacetylglucose-containing {Fe(NO)} dinitrosyl iron complexes (DNICs) were prepared and examined for NO release in the presence of both chemical NO-trapping agents and endothelial cells.

View Article and Find Full Text PDF

The crosstalk between cells and their microenvironment enables cellular adaptation to external mechanical cues through the remodeling of cytoskeletal structures and cell-matrix adhesions to ensure normal cell function. This study investigates the relationship between the cytoskeletal tension and integrin α5β1 adhesion strength to the matrix (i.e.

View Article and Find Full Text PDF

Mutations in ACTA2, encoding the smooth muscle cell (SMC)-specific isoform of α-actin (α-SMA), cause thoracic aortic aneurysms and dissections and occlusive vascular diseases, including early onset coronary artery disease and stroke. We have shown that occlusive arterial lesions in patients with heterozygous ACTA2 missense mutations show increased numbers of medial or neointimal SMCs. The contribution of SMC hyperplasia to these vascular diseases and the pathways responsible for linking disruption of α-SMA filaments to hyperplasia are unknown.

View Article and Find Full Text PDF

The ability to measure real-time mechanosensitive events at the subcellular level in response to discrete mechanical stimulation is a critical component in understanding mechanically-induced cellular remodeling. Vascular smooth muscle cells (VSMC) were transfected with RhoA constructs (wild type, dominant negative or constitutively active) or treated with ML-7 to induce specific cytoskeletal tension characteristics prior to mechanical stimulation. Tensile stress was applied to live VSMC using an atomic force microscope probe functionalized with extracellular matrix (ECM) proteins.

View Article and Find Full Text PDF

To understand the mechanism by which living cells sense mechanical forces, and how they respond and adapt to their environment, a new technology able to investigate cells behavior at sub-cellular level with high spatial and temporal resolution was developed. Thus, an atomic force microscope (AFM) was integrated with total internal reflection fluorescence (TIRF) microscopy and fast-spinning disk (FSD) confocal microscopy. The integrated system is broadly applicable across a wide range of molecular dynamic studies in any adherent live cells, allowing direct optical imaging of cell responses to mechanical stimulation in real-time.

View Article and Find Full Text PDF

Morphological adaptations of vascular smooth muscle cells (VSMC) to the mechanically active environment in which they reside, are mediated by direct interactions with the extracellular matrix (ECM) which induces physiological changes at the intracellular level. This study aimed to analyze the effects of the ECM on RhoA-induced mechanical signaling that controls actin organization and focal adhesion formation. VSMC were transfected with RhoA constructs (wild type, dominant negative or constitutively active) and plated on different ECM proteins used as substrate (fibronectin, collagen IV, collagen I, and laminin) or poly-l-lysine as control.

View Article and Find Full Text PDF

Vibrational sum frequency spectroscopy (VSFS) was used to explore specific ion effects on interfacial water structure adjacent to a bovine serum albumin (BSA) monolayer adsorbed at the air/water interface. The subphase conditions were varied by the use of six different sodium salts and four different pH values. At pH 2 and 3, the protein layer was positively charged and it was found that the most chaotropic anions caused the greatest attenuation of water structure.

View Article and Find Full Text PDF

Mechanical force is an important stimulus and determinant of many vascular smooth muscle cell functions including contraction, proliferation, migration, and cell attachment. Transmission of force from outside the cell through focal adhesions controls the dynamics of these adhesion sites and initiates intracellular signaling cascades that alter cellular behavior. To understand the mechanism by which living cells sense mechanical forces, and how they respond and adapt to their environment, a critical first step is to develop a new technology to investigate cellular behavior at subcellular level that integrates an atomic force microscope (AFM) with total internal reflection fluorescence (TIRF) and fast-spinning disk (FSD) confocal microscopy, providing high spatial and temporal resolution.

View Article and Find Full Text PDF
Article Synopsis
  • VSFS was employed to analyze gauche defects in ODA monolayers at the air/water interface, revealing important information about the monolayer's hydrophobic region.
  • The presence of gauche conformers increases as the monolayer transitions from solid to liquid phase, affecting its microscopic structure.
  • By utilizing temperature-dependent spectra and the Clapeyron equation, researchers obtained the first in situ measurements of entropy and enthalpy changes related to these conformers in the monolayer.
View Article and Find Full Text PDF

Vibrational sum frequency spectroscopy was used to probe fatty amine monolayers spread on various electrolyte solutions. The spectra revealed ion specific changes in both monolayer ordering and water structure with the former following the Hofmeister series. Separate measurements of the surface potential as a function of ion tracked closely to changes in alkyl chain structure, but less closely to changes in water structure.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated how fibrinogen, a protein in human plasma, is displaced from silica surfaces using advanced microscopy and spectroscopy techniques.
  • The findings revealed that at neutral pH, fibrinogen can be easily replaced by other plasma proteins because its alpha C domains are only weakly attached to the surface.
  • When the pH is acidic, these alpha C domains are permanently removed, allowing the rest of fibrinogen to form much stronger bonds with the surface, significantly reducing the rate of displacement by other proteins.
View Article and Find Full Text PDF