Micrometer-sized single crystal cathodes have garnered significant interest as promising cathode materials for lithium-ion batteries due to their ability to reduce surface area exposure to electrolytes and suppress side reactions, thereby enhancing electrochemical performance. One of the challenging issues with single crystal cathode materials is synthesizing monodisperse and discrete single crystals rather than agglomerated quasi-single crystals. However, conventional solid-state synthesis of most single crystals results in severe agglomeration and cation mixing, as it requires high temperatures to promote particle growth to several micrometers.
View Article and Find Full Text PDF