Understanding characteristics of diurnal particle concentration variation in an underground subway tunnel is important to reduce subway passengers' exposure to high levels of toxic particle pollution. In this study, real-time particle monitoring for eight consecutive days was done at a shelter located in the middle of a one-way underground subway tunnel in Seoul, Republic of Korea, during the summer of 2015. Particle mass concentration was measured using a dust monitor and particle number concentration using an optical particle counter.
View Article and Find Full Text PDFExposure to airborne particulate matter (PM) causes several diseases in the human body. The smaller particles, which have relatively large surface areas, are actually more harmful to the human body since they can penetrate deeper parts of the lungs or become secondary pollutants by bonding with other atmospheric pollutants, such as nitrogen oxides. The purpose of this study is to present the number of PM inhaled by subway users as a possible reference material for any analysis of the hazards to the human body arising from the inhalation of such PM.
View Article and Find Full Text PDFThe indoor air quality of subway systems can significantly affect the health of passengers since these systems are widely used for short-distance transit in metropolitan urban areas in many countries. The particles generated by abrasion during subway operations and the vehicle-emitted pollutants flowing in from the street in particular affect the air quality in underground subway stations. Thus the continuous monitoring of particulate matter (PM) in underground station is important to evaluate the exposure level of PM to passengers.
View Article and Find Full Text PDFEmission reduction is one of the most efficient control measures in fuel-powered locomotives. The purpose of this study was to determine the reduction in particulate matter (PM) and black carbon (BC) emissions following the installation of a fuel activation device (FAD). The FAD was developed to enhance fuel combustion by atomizing fuel and to increase the surface area per unit volume of injected fuel.
View Article and Find Full Text PDFAs the number of people using rapid transit systems (subways) continues to rise in major cities worldwide, increasing attention has been given to the indoor air quality of underground stations. This study intended to observe the change of PM distribution by size in an underground station with PSDs installed located near the main road in downtown Seoul, as well as to examine causes for the changes. The results indicate that the PM suspended in the tunnel flowed into the platform area even in a subway station where the effect of train-induced wind is blocked by installed PSDs, as this flow occurred when the PSDs were opened.
View Article and Find Full Text PDFIn this study, we measured the size distribution of particles ranging in size from 5.6 to 560 nm that were emitted between brake disks and pads under various braking conditions to observe and analyze changes to the resulting particle size distribution over braking time. A peak of 178-275 nm (200 nm peak) was observed in all braking conditions.
View Article and Find Full Text PDFGiven that around eight million commuters use the Seoul Metropolitan Subway (SMS) each day, the indoor air quality (IAQ) of its stations has attracted much public attention. We have monitored the concentration of particulate matters (PMx) (i.e.
View Article and Find Full Text PDFBiomass fuel is used for cooking and heating, especially in developing countries. Combustion of biomass fuel can generate high levels of indoor air pollutants, including particulate matter (PM) and volatile organic compounds (VOCs). This study characterized PM and VOC emissions from cow dung combustion in a controlled experiment.
View Article and Find Full Text PDFIncreasing concerns about the spread of airborne pathogens such as severe acute respiratory syndrome (SARS) and novel swine-origin influenza A (H1N1) have attracted public attention to bioaerosols and protection against them. The airborne pathogens are likely to be expelled from coughing or speaking, so the physical data of the exhaled particles plays a key role in analyzing the pathway of airborne viruses. The objective of this study was to analyze the initial velocity and the angle of the exhaled airflow from coughing and speaking of 17 males and 9 females using Particle Image Velocimetry (PIV) and acrylic indoor chamber.
View Article and Find Full Text PDFNumerous reports have shown that fine particulates threaten human health. Since their health impact is associated with both mass and number concentrations, it is necessary to evaluate the emission standards for particulate mass accordingly. This study examined the particulate matter characteristics of diesel locomotive engine exhaust at various engine ratings.
View Article and Find Full Text PDFWe analyzed the size-dependent volatility of nanoparticles in a diameter range of 30-70 nm in diesel exhaust emissions. The test system included a medium-duty diesel truck on a chassis dynamometer, a single-stage dilution tunnel, a tandem differential mobility analyzer (TDMA) equipped with an electric furnace, and a condensation particle counter. The size shifts of monodispersed diesel nanoparticles under changing furnace temperatures were measured by TDMA in the gas phase.
View Article and Find Full Text PDF