Publications by authors named "Soon Y Tang"

Article Synopsis
  • Heart failure (HF) is linked to the use of NSAIDs, but it's unclear whether they lead more to heart failure with reduced ejection fraction (HFrEF) or preserved ejection fraction (HFpEF).
  • Research in mice showed that while COX-2 inhibition didn't affect cardiac function overall, aged female mice experienced signs of diastolic dysfunction and elevated BNP levels while maintaining preserved ejection fraction.
  • The findings suggest that COX-2 deletion specifically leads to HFpEF rather than HFrEF and indicates that calcium handling imbalances may affect heart relaxation in this context.
View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) that target programmed cell death 1 (PD-1) have revolutionized cancer treatment by enabling the restoration of suppressed T-cell cytotoxic responses. However, resistance to single-agent ICIs limits their clinical utility. Combinatorial strategies enhance their antitumor effects, but may also enhance the risk of immune related adverse effects of ICIs.

View Article and Find Full Text PDF

Background: Low-dose aspirin is widely used for the secondary prevention of cardiovascular disease. The beneficial effects of low-dose aspirin are attributable to its inhibition of platelet Cox (cyclooxygenase)-1-derived thromboxane A. Until recently, the use of the Pf4 (platelet factor 4) Cre has been the only genetic approach to generating megakaryocyte/platelet ablation of Cox-1 in mice.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a chronic parenchymal lung disease characterized by repetitive alveolar cell injury, myofibroblast proliferation, and excessive extracellular matrix deposition for which unmet need persists for effective therapeutics. The bioactive eicosanoid, prostaglandin F2α, and its cognate receptor FPr (Ptgfr) are implicated as a TGF-β1-independent signaling hub for IPF. To assess this, we leveraged our published murine PF model (IER-SftpcI73T) expressing a disease-associated missense mutation in the surfactant protein C (Sftpc) gene.

View Article and Find Full Text PDF

Metabolic syndrome, today affecting more than 20% of the US population, is a group of 5 conditions that often coexist and that strongly predispose to cardiovascular disease. How these conditions are linked mechanistically remains unclear, especially two of these: obesity and elevated blood pressure. Here, we show that high fat consumption in mice leads to the accumulation of lipid droplets in endothelial cells throughout the organism and that lipid droplet accumulation in endothelium suppresses endothelial nitric oxide synthase (eNOS), reduces NO production, elevates blood pressure, and accelerates atherosclerosis.

View Article and Find Full Text PDF

Optimal lung repair and regeneration are essential for recovery from viral infections, including influenza A virus (IAV). We have previously demonstrated that acute inflammation and mortality induced by IAV is under circadian control. However, it is not known whether the influence of the circadian clock persists beyond the acute outcomes.

View Article and Find Full Text PDF

Idiopathic Pulmonary Fibrosis (IPF) is a chronic parenchymal lung disease characterized by repetitive alveolar cell injury, myofibroblast proliferation, and excessive extracellular matrix deposition for which unmet need persists for effective therapeutics. The bioactive eicosanoid, prostaglandin F2, and its cognate receptor FPr () are implicated as a TGF1 independent signaling hub for IPF. To assess this, we leveraged our published murine PF model (I - ) expressing a disease-associated missense mutation in the surfactant protein C () gene.

View Article and Find Full Text PDF

Longitudinal studies associate shiftwork with cardiometabolic disorders but do not establish causation or elucidate mechanisms of disease. We developed a mouse model based on shiftwork schedules to study circadian misalignment in both sexes. Behavioral and transcriptional rhythmicity were preserved in female mice despite exposure to misalignment.

View Article and Find Full Text PDF

Fibroblasts are stromal cells abundant throughout tissues, including the lungs. Fibroblasts are integral coordinators of immune cell recruitment through chemokine secretion. Circadian rhythms direct the recruitment of immune cells to the lung, which in turn impacts response to infection and survival.

View Article and Find Full Text PDF

The significant morbidity and mortality associated with severe acute respiratory syndrome coronavirus 2 infection has underscored the need for novel antiviral strategies. Lipids play essential roles in the viral life cycle. The lipid composition of cell membranes can influence viral entry by mediating fusion or affecting receptor conformation.

View Article and Find Full Text PDF

Inhibitors of microsomal prostaglandin E synthase 1 (mPGES-1) are in the early phase of clinical development. Deletion of mPges-1 in mice confers analgesia, restrains atherogenesis, and fails to accelerate thrombogenesis, while suppressing prostaglandin E2 (PGE2), but increasing the biosynthesis of prostacyclin (PGI2). In low-density lipoprotein receptor-deficient (Ldlr-/-) mice, this last effect represents the dominant mechanism by which mPges-1 deletion restrains thrombogenesis, while suppression of PGE2 accounts for its antiatherogenic effect.

View Article and Find Full Text PDF

Low-density lipoprotein (LDL)-mimetic lipid nanoparticles (LNPs), decorated with MRI contrast agents and fluorescent dyes, were prepared by the covalent attachment of apolipoprotein-mimetic peptide (), Gd(iii)-chelate (), and sulforhodamine B () moieties on the LNP surface. The functionalized LNPs were prepared using the amide-forming potassium acyltrifluoroborate (KAT) ligation reaction. The KAT groups on the surface of LNPs were allowed to react with the corresponding hydroxylamine (HA) derivatives of and to provide bi-functionalized LNPs ().

View Article and Find Full Text PDF

Adverse early-life exposures have a lasting negative impact on health. Neonatal hyperoxia that is a risk factor for bronchopulmonary dysplasia confers susceptibility to influenza A virus (IAV) infection later in life. Given our previous findings that the circadian clock protects against IAV, we asked if the long-term impact of neonatal hyperoxia vis-à-vis IAV infection includes circadian disruption.

View Article and Find Full Text PDF

Circadian rhythms refer to oscillations in various biological process that occur with a 24 h period. At the molecular level, such rhythms are comprised of a web of transcriptional-translational feedback loops (TTFL) of core clock genes. Individual tissues and organ systems, including the immune system, have their own clock.

View Article and Find Full Text PDF

Objective: Although the molecular components of circadian rhythms oscillate in discrete cellular components of the vasculature and many aspects of vascular function display diurnal variation, the cellular connections between the molecular clock and inflammatory cardiovascular diseases remain to be elucidated. Previously we have shown that pre- versus postnatal deletion of Bmal1 (brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1), the nonredundant core clock gene has contrasting effects on atherogenesis. Here we investigated the effect of myeloid cell Bmal1 deletion on atherogenesis and abdominal aortic aneurysm formation in mice.

View Article and Find Full Text PDF

Library preparation is a key step in sequencing. For RNA sequencing there are advantages to both strand specificity and working with minute starting material, yet until recently there was no kit available enabling both. The Illumina TruSeq stranded mRNA Sample Preparation kit (TruSeq) requires abundant starting material while the Takara Bio SMART-Seq v4 Ultra Low Input RNA kit (V4) sacrifices strand specificity.

View Article and Find Full Text PDF

Influenza is a leading cause of respiratory mortality and morbidity. While inflammation is essential for fighting infection, a balance of anti-viral defense and host tolerance is necessary for recovery. Circadian rhythms have been shown to modulate inflammation.

View Article and Find Full Text PDF

Selective deletion of microsomal prostaglandin E synthase-1 (mPges-1) in myeloid cells retards atherogenesis and suppresses the vascular proliferative response to injury, while it does not predispose to thrombogenesis or hypertension. However, studies using bone marrow transplants from irradiated mice suggest that myeloid cell mPGES-1 facilitates cardiac remodeling and prolongs survival after experimental myocardial infarction (MI). Here, we addressed this question using mice lacking mPges-1 in myeloid cells, particularly macrophages [Mac-mPges-1-knockout (KO)], generated by crossing mPges-1 floxed mice with LysMCre mice and subjecting them to coronary artery ligation.

View Article and Find Full Text PDF

Previous studies using genetic mouse models have implicated COX-2 in the browning of white adipose tissues (WATs) in mice during cold exposure. However, COX-2 is important during development, and conventional knockouts (KOs) exhibit many defects, conditioned by genetic background. Similarly, the physiological relevance of transgenic overexpression of COX-2 is questionable.

View Article and Find Full Text PDF

Background: Large-scale, placebo-controlled trials established that nonsteroidal anti-inflammatory drugs confer a cardiovascular hazard: this has been attributed to depression of cardioprotective products of cyclooxygenase (COX)-2, especially prostacyclin. An alternative mechanism by which nonsteroidal anti-inflammatory drugs might constrain cardioprotection is by enhancing the formation of methylarginines in the kidney that would limit the action of nitric oxide throughout the vasculature.

Methods: Targeted and untargeted metabolomics were used to investigate the effect of COX-2 deletion or inhibition in mice and in osteoarthritis patients exposed to nonsteroidal anti-inflammatory drugs on the l-arginine/nitric oxide pathway.

View Article and Find Full Text PDF

Background: Inhibitors of cyclooxygenase-2 alleviate pain and reduce fever and inflammation by suppressing the biosynthesis of prostacyclin (PGI2) and prostaglandin E2. However, suppression of these prostaglandins, particularly PGI2, by cyclooxygenase-2 inhibition or deletion of its I prostanoid receptor also predisposes to accelerated atherogenesis and thrombosis in mice. By contrast, deletion of microsomal prostaglandin E synthase 1 (mPGES-1) confers analgesia, attenuates atherogenesis, and fails to accelerate thrombogenesis, while suppressing prostaglandin E2, but increasing biosynthesis of PGI2.

View Article and Find Full Text PDF

Microsomal prostaglandin E synthase-1 (mPGES-1) in myeloid and vascular cells differentially regulates the response to vascular injury, reflecting distinct effects of mPGES-1-derived PGE2 in these cell types on discrete cellular components of the vasculature. The cell selective roles of mPGES-1 in atherogenesis are unknown. Mice lacking mPGES-1 conditionally in myeloid cells (Mac-mPGES-1-KOs), vascular smooth muscle cells (VSMC-mPGES-1-KOs), or endothelial cells (EC-mPGES-1-KOs) were crossed into hyperlipidemic low-density lipoprotein receptor-deficient animals.

View Article and Find Full Text PDF

Background: Placebo-controlled trials of nonsteroidal anti-inflammatory drugs selective for inhibition of cyclooxygenase-2 (COX-2) reveal an emergent cardiovascular hazard in patients selected for low risk of heart disease. Postnatal global deletion of COX-2 accelerates atherogenesis in hyperlipidemic mice, a process delayed by selective enzyme deletion in macrophages.

Methods And Results: In the present study, selective depletion of COX-2 in vascular smooth muscle cells and endothelial cells depressed biosynthesis of prostaglandin I2 and prostaglandin E2, elevated blood pressure, and accelerated atherogenesis in Ldlr knockout mice.

View Article and Find Full Text PDF