Publications by authors named "Soon Jong Kim"

The bacterial toxin-antitoxin MazEF system in the tuberculosis (TB)-causing bacterium is activated under unfavorable conditions, including starvation, antibiotic exposure, and oxidative stress. This system contains the ribonucleolytic enzyme MazF and has emerged as a promising drug target for TB treatments targeting the latent stage of infection and reportedly mediates a cell death process via a peptide called extracellular death factor (EDF). Although it is well established that the increase in EDF-mediated toxicity of MazF drives a cell-killing phenomenon, the molecular details are poorly understood.

View Article and Find Full Text PDF

TBC1D4 (also known as AS160) is a Rab·GTPase-activating protein (RabGAP) which functions in insulin signaling. TBC1D4 is critical for translocation of glucose transporter 4 (GLUT4), from an inactive, intracellular, vesicle-bound site to the plasma membrane, where it promotes glucose entry into cells. The TBC1D4 protein is structurally subdivided into two N-terminal phosphotyrosine-binding (PTB) domains, a C-terminal catalytic RabGAP domain, and a disordered segment in between containing potential Akt phosphorylation sites.

View Article and Find Full Text PDF

Ice nucleation protein (INP) with its functional domain consisting of multiple 48-residue repeat units effectively induces super-cooled water into ice. Circular dichroism and infrared deconvolution analyses on a soluble 240-residue fragment of Pseudomonas syringae InaZ (InaZ240) containing five 48-residue repeat units indicated that it is mostly composed of β-sheet and random coil. Analytical ultracentrifugation suggested that InaZ240 behaves as a monomer of an elongated ellipsoid.

View Article and Find Full Text PDF

Colonization of the human gastric mucosa by Helicobacter pylori requires its high motility, which depends on the helical cell shape. In H. pylori, several genes (csd1, csd2, csd3/hdpA, ccmA, csd4, csd5, and csd6) play key roles in determining the cell shape by alteration of cross-linking or by trimming of peptidoglycan stem peptides.

View Article and Find Full Text PDF

We have developed the first nanoengineered quantum dot molecular complex designed to measure changes of calcium ion (Ca2+) concentration at high spatial and temporal resolutions in real time. The sensor is ratiometric and composed of three components: a quantum dot (QD) emitting at 620 nm as a fluorescence donor, an organic dye (Alexa Fluor 647) as a fluorescence acceptor, and a calmodulin-M13 (CaM-M13) protein part as a calcium sensing component. In this work, we have determined the maximal number of CaM-M13 required for saturating a single QD particle to be approximately 16.

View Article and Find Full Text PDF

Thermoplasma acidophilum is a thermophilic archaeon that uses both non-phosphorylative Entner-Doudoroff (ED) pathway and Embden-Meyerhof-Parnas (EMP) pathway for glucose degradation. While triosephosphate isomerase (TPI), a well-known glycolytic enzyme, is not involved in the ED pathway in T. acidophilum, it has been considered to play an important role in the EMP pathway.

View Article and Find Full Text PDF

Helicobacter pylori causes gastrointestinal diseases, including gastric cancer. Its high motility in the viscous gastric mucosa facilitates colonization of the human stomach and depends on the helical cell shape and the flagella. In H.

View Article and Find Full Text PDF

Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets.

View Article and Find Full Text PDF

Helicobacter pylori is associated with various gastrointestinal diseases such as gastritis, ulcers and gastric cancer. Its colonization of the human gastric mucosa requires high motility, which depends on its helical cell shape. Seven cell shape-determining genes (csd1, csd2, csd3/hdpA, ccmA, csd4, csd5 and csd6) have been identified in H.

View Article and Find Full Text PDF

The ywpF gene (SAV2097) of the Staphylococcus aureus strain Mu50 encodes the YwpF protein, which may play a role in antibiotic resistance. Here, we report the first crystal structure of the YwpF superfamily from S. aureus at 2.

View Article and Find Full Text PDF

In Escherichia coli, seven genes (pstS, pstC, pstA, pstB, phoU, phoR, and phoB) are involved in sensing environmental phosphate (Pi) and controlling the expression of the Pho regulon. PhoU is a negative regulator of the Pi-signaling pathway and modulates Pi transport through Pi transporter proteins (PstS, PstC, PstA, and PstB) through the two-component system PhoR and PhoB. Inactivation of PhoY2, one of the two PhoU homologs in Mycobacterium tuberculosis, causes defects in persistence phenotypes and increased susceptibility to antibiotics and stresses.

View Article and Find Full Text PDF

Acetylation and deacetylation reactions result in biologically important modifications that are involved in normal cell function and cancer development. These reactions, carried out by protein acetyltransferase enzymes, act by transferring an acetyl group from acetyl-coenzymeA (Ac-CoA) to various substrate proteins. Such protein acetylation remains poorly understood in Archaea, and has been only partially described.

View Article and Find Full Text PDF

Ice-binding proteins (IBPs) inhibit ice growth through direct interaction with ice crystals to permit the survival of polar organisms in extremely cold environments. FfIBP is an ice-binding protein encoded by the Antarctic bacterium Flavobacterium frigoris PS1. The X-ray crystal structure of FfIBP was determined to 2.

View Article and Find Full Text PDF

Maturation of cytochrome c is carried out in the bacterial periplasm, where specialized thiol-disulfide oxidoreductases provide the correct reduction of oxidized apocytochrome c before covalent haem attachment. HP0377 from Helicobacter pylori is a thioredoxin-fold protein that has been implicated as a component of system II for cytochrome c assembly and shows limited sequence similarity to Escherichia coli DsbC, a disulfide-bond isomerase. To better understand the role of HP0377, its crystal structures have been determined in both reduced and partially oxidized states, which are highly similar to each other.

View Article and Find Full Text PDF

Difficulty in the treatment of tuberculosis and growing drug resistance in Mycobacterium tuberculosis (Mtb) are a global health issue. Carbapenems inactivate L,D-transpeptidases; meropenem, when administered with clavulanate, showed in vivo activity against extensively drug-resistant Mtb strains. LdtMt2 (Rv2518c), one of two functional L,D-transpeptidases in Mtb, is predominantly expressed over LdtMt1 (Rv0116c).

View Article and Find Full Text PDF

Previously, we reported the ice-binding protein (LeIBP) from the Arctic yeast Leucosporidium sp. AY30. In this study we provide physicochemical characterization of this IBP, which belongs to a class of IBPs that exhibited no significant similarity in primary structure to other known antifreeze proteins (AFPs).

View Article and Find Full Text PDF

Apoptosis inhibitor 5 (API5) is an anti-apoptotic protein that is up-regulated in various cancer cells. Here, we present the crystal structure of human API5. API5 exhibits an elongated all α-helical structure.

View Article and Find Full Text PDF

Dsb proteins play important roles in bacterial pathogenicity. To better understand the role of Dsb proteins in Helicobacter pylori, we have structurally and functionally characterized H. pylori DsbG (HP0231).

View Article and Find Full Text PDF

Unique metal-dependent protein tyrosine phosphatases that belong to the polymerase and histindinol phosphatase (PHP) family are present in Gram-positive bacteria. They are distinct from the Cys-based, low-molecular-weight phosphotyrosine protein phosphatases (LMPTPs). Two representative members of the PHP family tyrosine phosphatases are YwqE from Bacillus subtilis and CpsB from Streptococcus pneumoniae.

View Article and Find Full Text PDF

A growing body of evidence suggests that nobiletin (5,6,7,8,3',4'-hexamethoxy flavone) from the peel of citrus fruits, enhances the damaged cognitive function in disease animal models. However, the neuroprotective mechanism has not been clearly elucidated. Since nobiletin has shown anti-inflammatory effects in several tissues, we investigated whether nobiletin suppresses excessive microglial activation implicated in neurotoxicity in lipopolysaccharide (LPS)-stimulated BV-2 microglia cell culture models.

View Article and Find Full Text PDF

Dom34 from Saccharomyces cerevisiae is one of the key players in no-go mRNA decay, a surveillance pathway by which an abnormal mRNA stalled during translation is degraded by an endonucleolytic cleavage. Its homologs called Pelota are found in other species. We showed previously that S.

View Article and Find Full Text PDF

Tpa1 (for termination and polyadenylation) from Saccharomyces cerevisiae is a component of a messenger ribonucleoprotein (mRNP) complex at the 3' untranslated region of mRNAs. It comprises an N-terminal Fe(II)- and 2-oxoglutarate (2OG) dependent dioxygenase domain and a C-terminal domain. The N-terminal dioxygenase domain of a homologous Ofd1 protein from Schizosaccharomyces pombe was proposed to serve as an oxygen sensor that regulates the activity of the C-terminal degradation domain.

View Article and Find Full Text PDF

GluR0 from Nostoc punctiforme (NpGluR0) is a bacterial homologue of the ionotropic glutamate receptor (iGluR). We have solved the crystal structure of the ligand-binding core of NpGluR0 in complex with l-glutamate at a resolution of 2.1 A.

View Article and Find Full Text PDF

The yeast protein Dom34 is a key component of no-go decay, by which mRNAs with translational stalls are endonucleolytically cleaved and subsequently degraded. However, the identity of the endoribonuclease is unknown. Homologs of Dom34, called Pelota, are broadly conserved in eukaryotes and archaea.

View Article and Find Full Text PDF

In various bacteria, Zur, a zinc-specific regulator of the Fur family, regulates genes for zinc transport systems to maintain zinc homeostasis. It has also been suggested that Zur controls zinc mobilization by regulating some ribosomal proteins. The antibiotic-producing soil bacterium Streptomyces coelicolor contains four genes for Fur family regulators, and one (named zur) is located downstream of the znuACB operon encoding a putative zinc uptake transporter.

View Article and Find Full Text PDF