The electrode concept of graphite and silicon blending has recently been utilized as the anode in the current lithium-ion batteries (LIBs) industry, accompanying trials of improvement of cycling life in the commercial levels of electrode conditions, such as the areal capacity of approximately 3.3 mAh/cm and volumetric capacity of approximately 570 mAh/cm. However, the blending concept has not been widely explored in the academic reports, which focused mainly on how much volume expansion of electrodes could be mitigated.
View Article and Find Full Text PDFDespite the advantage of high capacity, the practical use of the silicon anode is still hindered by large volume expansion during the severe pulverization lithiation process, which results in electrical contact loss and rapid capacity fading. Here, a combined electrochemical and computational study on the factor for accommodating volume expansion of silicon-based anodes is shown. 1D silicon-based nanostructures with different internal spaces to explore the effect of spatial ratio of voids and their distribution degree inside the fibers on structural stability are designed.
View Article and Find Full Text PDFWith the development of flexible mobile devices, flexible Li-ion batteries have naturally received much attention. Previously, all reported flexible components have had shortcomings related to power and energy performance. In this research, in order to overcome these problems while maintaining the flexibility, honeycomb-patterned Cu and Al materials were used as current collectors to achieve maximum adhesion in the electrodes.
View Article and Find Full Text PDFAmorphous SiO2 coating layers with thicknesses of ca. 2, 7, 10, and 15 nm are introduced into bulk@nanowire core@shell Si particles via direct thermal oxidation at 650-850 °C. Of the coated samples, Si with a coating thickness of ca.
View Article and Find Full Text PDF