Crystallization kinetic controls the crystallographic orientation, inducing anisotropic properties of the materials. As a result, preferential orientation with advanced optoelectronic properties can enhance the photovoltaic devices' performance. Although incorporation of additives is one of the most studied methods to stabilize the photoactive α-phase of formamidinium lead tri-iodide (α-FAPbI ), no studies focus on how the additives affect the crystallization kinetics.
View Article and Find Full Text PDFPerovskite solar cells (PSCs) have attracted tremendous interest due to their outstanding intrinsic photovoltaic properties, such as absorption coefficients, exciton binding energies, and long carrier lifetimes. Although the power conversion efficiency (PCE) of PSCs is close to the Si solar cells' PCE, device stability remains a challenge. In particular, the device stability is more critical in n-i-p normal structured PSCs, which show a higher efficiency than p-i-n inverted ones, simply because of the much lower stability of 2,2',7,7'-tetrakis[,-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (Spi).
View Article and Find Full Text PDF