Secreted protein acidic and cysteine rich/osteonectin, cwcv and kazal-like domain proteoglycan 2 (SPOCK2) is a protein that regulates cell differentiation and growth. Recent studies have reported that SPOCK2 plays important roles in the progression of various human cancers; however, the role of SPOCK2 in melanoma remains unknown. Therefore, this study investigated the roles of SPOCK2 and the related mechanisms in melanoma progression.
View Article and Find Full Text PDFThe coordinated movement of germ layer progenitor cells reaches its peak at the dorsal side, where the Bmp signaling gradient is low, and minimum at the ventral side, where the Bmp gradient is high. This dynamic cell movement is regulated by the interplay of various signaling pathways. The noncanonical Wnt signaling cascade serves as a pivotal regulator of convergence and extension cell movement, facilitated by the activation of small GTPases such as Rho, Rab, and Rac.
View Article and Find Full Text PDFAutism spectrum disorders (ASD) frequently accompany macrocephaly, which often involves hydrocephalic enlargement of brain ventricles. Katnal2 is a microtubule-regulatory protein strongly linked to ASD, but it remains unclear whether Katnal2 knockout (KO) in mice leads to microtubule- and ASD-related molecular, synaptic, brain, and behavioral phenotypes. We found that Katnal2-KO mice display ASD-like social communication deficits and age-dependent progressive ventricular enlargements.
View Article and Find Full Text PDFThe Bmp/Smad1 pathway plays a crucial role in developmental processes and tissue homeostasis. Mitogen-activated protein kinase (Mapk)/Erk mediated phosphorylation of Smad1 in the linker region leads to Smad1 degradation, cytoplasmic retention and inhibition of Bmp/Smad1 signaling. While Fgf/Erk pathway has been documented to inhibit Bmp/Smad1 signaling, several studies also suggests the cooperative interaction between these two pathways in different context.
View Article and Find Full Text PDFIn this study, we show that ANKS1A is specifically expressed in the brain endothelial cells of adult mice. deficiency in adult mice does not affect the differentiation, growth, or patterning of the cerebrovascular system; however, its absence significantly impacts the cerebrovascular system of the aged brain. In aged knock-out (KO) brains, vessel lesions exhibiting cerebral cavernous malformations (CCMs) are observed.
View Article and Find Full Text PDFBrain endothelial LDL receptor-related protein 1 (LRP1) is involved in the clearance of Aβ peptides across the blood-brain barrier (BBB). Here we show that endothelial deficiency of ankyrin repeat and SAM domain containing 1 A (ANKS1A) reduces both the cell surface levels of LRP1 and the Aβ clearance across the BBB. Association of ANKS1A with the NPXY motifs of LRP1 facilitates the transport of LRP1 from the endoplasmic reticulum toward the cell surface.
View Article and Find Full Text PDFIn this study, we examine whether a change in the protein levels for FOP in Ankyrin repeat and SAM domain-containing protein 1A (ANKS1A)-deficient ependymal cells affects the intraflagellar transport (IFT) protein transport system in the multicilia. Three distinct abnormalities are observed in the multicilia of ANKS1A-deficient ependymal cells. First, there were a greater number of IFT88-positive trains along the cilia from ANKS1A deficiency.
View Article and Find Full Text PDFA recent study revealed that the loss of Deup1 expression does not affect either centriole amplification or multicilia formation. Therefore, the deuterosome is not a platform for amplification of centrioles. In this study, we examine whether gain-of-function of Deup1 affects the development of multiciliated ependymal cells.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
March 2023
Cellular aging is the most severe risk factor for neurodegenerative disease. Simultaneously, oxidative stress (OS) is a critical factor in the aging process, resulting from an imbalance between reactive oxygen and nitrogen species and the antioxidant defense system. Emerging evidence indicates that OS is a common cause of several age-related brain pathologies, including cerebrovascular diseases.
View Article and Find Full Text PDFGastrulation is a critical step in the establishment of a basic body plan during development. Convergence and extension (CE) cell movements organize germ layers during gastrulation. Noncanonical Wnt signaling has been known as major signaling that regulates CE cell movement by activating Rho and Rac.
View Article and Find Full Text PDFGerm layer specification and axis formation are crucial events in embryonic development. The Spemann organizer regulates the early developmental processes by multiple regulatory mechanisms. This review focuses on the responsive signaling in organizer formation and how the organizer orchestrates the germ layer specification in vertebrates.
View Article and Find Full Text PDFInhibition of the bone morphogenetic proteins (BMPs) is the primary step toward neuroectoderm formation in vertebrates. In this process, the Spemann organizer of the dorsal mesoderm plays a decisive role by secreting several extracellular BMP inhibitors such as Chordin (Chrd). Chrd physically interacts with BMP proteins and inhibits BMP signaling, which triggers the expression of neural-specific transcription factors (TFs), including Foxd4l1.
View Article and Find Full Text PDFFibroblast growth factors (FGFs) comprise a large family of growth factors, regulating diverse biological processes including cell proliferation, migration, and differentiation. Each FGF binds to a set of FGF receptors to initiate certain intracellular signaling molecules. Accumulated evidence suggests that in early development and adult state of vertebrates, FGFs also play exclusive and context dependent roles.
View Article and Find Full Text PDFBackground: Cerebrospinal fluid (CSF) is an ultra-filtrated colorless brain fluid that circulates within brain spaces like the ventricular cavities, subarachnoid space, and the spine. Its continuous flow serves many primary functions, including nourishment, brain protection, and waste removal.
Main Body: The abnormal accumulation of CSF in brain cavities triggers severe hydrocephalus.
In plants, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a main enzyme in the glycolytic pathway. It plays an essential role in glycerolipid metabolism and response to various stresses. To examine the function of PsGAPDH ( GAPDH) in response to abiotic stress, we generated transgenic rice plants with single-copy/intergenic/homozygous overexpression (-OX) and investigated their responses to salinity stress.
View Article and Find Full Text PDFBackground: Plant glycine-rich proteins are categorized into several classes based on their protein structures. The glycine-rich RNA binding proteins (GRPs) are members of class IV subfamily possessing N-terminus RNA-recognition motifs (RRMs) and proposed to be involved in post-transcriptional regulation of its target transcripts. GRPs are involved in developmental process and cellular stress responses, but the molecular mechanisms underlying these regulations are still elusive.
View Article and Find Full Text PDFChloroplast ribonucleoproteins (cpRNPs) are nuclear-encoded and highly abundant proteins that are proposed to function in chloroplast RNA metabolism. However, the molecular mechanisms underlying the regulation of chloroplast RNAs involved in stress tolerance are poorly understood. Here, we demonstrate that (), a rice () cpRNP gene, is essential for stabilization of RNAs from the NAD(P)H dehydrogenase (NDH) complex, which in turn enhances drought and cold stress tolerance.
View Article and Find Full Text PDFThe motile cilia of ependymal cells coordinate their beats to facilitate a forceful and directed flow of cerebrospinal fluid (CSF). Each cilium originates from a basal body with a basal foot protruding from one side. A uniform alignment of these basal feet is crucial for the coordination of ciliary beating.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2020
A total of 472 epilepsy patients with a 4-year remission period were divided into 10-year age groups according to age of onset. The relapse patterns during at least 3 years of follow-up were classified as early relapse (ER), late relapse (LR), and seizure-free (SF). The remission probability and multiplicity of prognostic factors were evaluated using univariate and multivariate multinomial logistic analyses.
View Article and Find Full Text PDFBackground And Purpose: Hippocampal atrophy (HA) resulting from a central nervous system (CNS) infection might be a relevant lesion responsible for the clinical characteristics of medial temporal lobe epilepsy.
Methods: The clinical characteristics of 54 patients with CNS infection-related medial temporal lobe epilepsy (MTLE) with isolated HA (CNS infection group) and 155 patients with conventional MTLE with HA (conventional group) were compared retrospectively. CNS infection alone and bilateral involvement of the HA were analyzed as prognostic factors, in addition to the detailed clinical characteristics, such as limbic aura and the presence and proportion of each type of automatism, between the two groups, and both medical and surgical prognoses were separately considered.