Publications by authors named "Soochi Kim"

Microgravity has been shown to lead to both muscle atrophy and impaired muscle regeneration. The purpose was to study the efficacy of microgravity to model impaired muscle regeneration in an engineered muscle platform and then to demonstrate the feasibility of performing drug screening in this model. Engineered human muscle was launched to the International Space Station National Laboratory, where the effect of microgravity exposure for 7 days was examined by transcriptomics and proteomics approaches.

View Article and Find Full Text PDF

Merging diverse single-cell RNA sequencing (scRNA-seq) data from numerous experiments, laboratories and technologies can uncover important biological insights. Nonetheless, integrating scRNA-seq data encounters special challenges when the datasets are composed of diverse cell type compositions. Scanorama offers a robust solution for improving the quality and interpretation of heterogeneous scRNA-seq data by effectively merging information from diverse sources.

View Article and Find Full Text PDF

Ovarian cancer is a leading cause of death among gynecologic tumors, often detected at advanced stages. Metabolic reprogramming and increased lipid biosynthesis are key factors driving cancer cell growth. Stearoyl-CoA desaturase 1 (SCD1) is a crucial enzyme involved in de novo lipid synthesis, producing mono-unsaturated fatty acids (MUFAs).

View Article and Find Full Text PDF

Ovarian cancer is a lethal gynecologic cancer mostly diagnosed in an advanced stage with an accumulation of ascites. Interleukin-6 (IL-6), a pro-inflammatory cytokine is highly elevated in malignant ascites and plays a pleiotropic role in cancer progression. Mitochondria are dynamic organelles that undergo fission and fusion in response to external stimuli and dysregulation in their dynamics has been implicated in cancer progression and metastasis.

View Article and Find Full Text PDF

The global loss of heterochromatin during ageing has been observed in eukaryotes from yeast to humans, and this has been proposed as one of the causes of ageing. However, the cause of this age-associated loss of heterochromatin has remained enigmatic. Here we show that heterochromatin markers, including histone H3K9 di/tri-methylation and HP1, decrease with age in muscle stem cells (MuSCs) as a consequence of the depletion of the methyl donor S-adenosylmethionine (SAM).

View Article and Find Full Text PDF

Elucidating the transitional stages that define the pathway stem cells progress through during differentiation advances our understanding of biology and fosters the identification of therapeutic opportunities. However, distinguishing progenitor cells from other cell types and placing them in an epistatic pathway is challenging. This is exemplified in the adipocyte lineage, where the stromal vascular fraction (SVF) from adipose tissue is enriched for progenitor cells but also contains heterogeneous populations of cells.

View Article and Find Full Text PDF

Exercise has the ability to rejuvenate stem cells and improve tissue regeneration in aging animals. However, the cellular and molecular changes elicited by exercise have not been systematically studied across a broad range of cell types in stem cell compartments. We subjected young and old mice to aerobic exercise and generated a single-cell transcriptomic atlas of muscle, neural, and hematopoietic stem cells with their niche cells and progeny, complemented by whole transcriptome analysis of single myofibers.

View Article and Find Full Text PDF
Article Synopsis
  • Aging slows down the activation and increases the death of skeletal muscle stem cells (MuSCs), which leads to poor muscle repair.
  • Researchers used a multiomics approach, single-cell analysis, and functional tests to compare MuSCs from young and old mice, revealing that glutathione (GSH) metabolism is disrupted in older cells.
  • They discovered that older MuSCs form two distinct groups based on their GSH functionality and identified a mechanism involving NRF2 and NF-κB that maintains this division, suggesting that manipulating GSH levels could help reverse aging effects in MuSCs.
View Article and Find Full Text PDF

Short-term fasting is beneficial for the regeneration of multiple tissue types. However, the effects of fasting on muscle regeneration are largely unknown. Here, we report that fasting slows muscle repair both immediately after the conclusion of fasting as well as after multiple days of refeeding.

View Article and Find Full Text PDF

Molecular characterization of cell types using single-cell transcriptome sequencing is revolutionizing cell biology and enabling new insights into the physiology of human organs. We created a human reference atlas comprising nearly 500,000 cells from 24 different tissues and organs, many from the same donor. This atlas enabled molecular characterization of more than 400 cell types, their distribution across tissues, and tissue-specific variation in gene expression.

View Article and Find Full Text PDF

A key property of adult stem cells is their ability to persist in a quiescent state for prolonged periods of time. The quiescent state is thought to contribute to stem cell resilience by limiting accumulation of DNA replication–associated mutations. Moreover, cellular stress response factors are thought to play a role in maintaining quiescence and stem cell integrity.

View Article and Find Full Text PDF

The interaction of immune checkpoint molecules in the tumor microenvironment reduces the anti-tumor immune response by suppressing the recognition of T cells to tumor cells. Immune checkpoint inhibitor (ICI) therapy is emerging as a promising therapeutic option for cancer treatment. However, modulating the immune system with ICIs still faces obstacles with severe immunogenic side effects and a lack of response against many cancer types.

View Article and Find Full Text PDF

Fluid accumulation in the abdominal cavity is commonly found in advanced-stage ovarian cancer patients, which creates a specialized tumor microenvironment for cancer progression. Using single-cell RNA sequencing (scRNA-seq) of ascites cells from five patients with ovarian cancer, we identified seven cell types, including heterogeneous macrophages and ovarian cancer cells. We resolved a distinct polarization state of macrophages by MacSpectrum analysis and observed subtype-specific enrichment of pathways associated with their functions.

View Article and Find Full Text PDF

Cisplatin resistance remains a significant obstacle for improving the clinical outcome of ovarian cancer patients. Recent studies have demonstrated that cisplatin is an important inducer of intracellullar reactive oxygen species (ROS), triggering cancer cell death. Sirtuin 2 (SIRT2), a member of class III NAD dependent histone deacetylases (HDACs), has been reported to be involved in regulating cancer hallmarks including drug response.

View Article and Find Full Text PDF

Recent advancements in the resolution and throughput of single-cell analyses, including single-cell RNA sequencing (scRNA-seq), have achieved significant progress in biomedical research in the last decade. These techniques have been used to understand cellular heterogeneity by identifying many rare and novel cell types and characterizing subpopulations of cells that make up organs and tissues. Analysis across various datasets can elucidate temporal patterning in gene expression and developmental cues and is also employed to examine the response of cells to acute injury, damage, or disruption.

View Article and Find Full Text PDF

Background: The purpose of this study was to investigate the role of malignant ascites tumor microenvironment in ovarian cancer progression and chemoresistance.

Methods: A total of 45 patients with ovarian cancer and three benign ascites were collected at the time of clinical intervention. Ascites cholesterol levels were quantitated using cholesterol quantitation kit and recurrence free survival (RFS) of ovarian cancer patients were collected.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

View Article and Find Full Text PDF

Development of novel strategies to overcome chemoresistance is central goal in ovarian cancer research. Natural history of the cancer development and progression is being reconstructed by genomic datasets to understand the evolutionary pattern and direction. Recent studies suggest that intra-tumor heterogeneity (ITH) is the main cause of treatment failure by chemoresistance in many types of cancers including ovarian cancer.

View Article and Find Full Text PDF

Epithelial ovarian cancer (EOC) is a silent but mostly lethal gynecologic malignancy. Most patients present with malignant ascites and peritoneal seeding at diagnosis. In the present study, we used a laser-aided isolation technique to investigate the clonal relationship between the primary tumor and tumor spheroids found in the malignant ascites of an EOC patient.

View Article and Find Full Text PDF

Mitochondria, evolutionally acquired symbionts of eukaryotic cells, are essential cytoplasmic organelles. They are structurally dynamic organelles that continually go through fission and fusion processes in response to various stimuli. Tumour tissue is composed of not just cancer cells but also various cell types like fibroblasts, mesenchymal stem and immune cells.

View Article and Find Full Text PDF

Obesity is a serious health problem and critically related to poor prognosis in cancer, presumably through induction of chronic inflammation. The major culprit for cancer progression in obesity is presumed to be macrophages. Accumulation of macrophages in adipose tissue due to obesity induced chronic inflammation has been observed.

View Article and Find Full Text PDF

Transcoelomic route is the most common and the earliest route of metastasis, causing the ascites formation in advanced epithelial ovarian cancer (EOC). We demonstrated that interleukin 6 (IL-6) is enriched in the malignant ascites from patients with ovarian cancer, which enhanced invasive properties of EOC cells. Interestingly, the expression of IL-6R on cell membrane of EOC cells correlated with ascites-induced invasion.

View Article and Find Full Text PDF

Purpose: Adipose stromal cells (ASCs) play an important regulatory role in cancer progression and metastasis by regulating systemic inflammation and tissue metabolism. This study examined whether visceral and subcutaneous ASCs (V- and S-ASCs) facilitate the growth and migration of ovarian cancer cells.

Materials And Methods: CD45 and CD31 double-negative ASCs were isolated from the subcutaneous and visceral fat using magnetic-activated cell sorting.

View Article and Find Full Text PDF

Malignant ascites constitute a unique tumor microenvironment providing a physical structure for the accumulation of cellular and acellular components. Ascites is initiated and maintained by physical and biological factors resulting from underlying disease and forms an ecosystem that contributes to disease progression. It has been demonstrated that the cellular contents and the molecular signatures of ascites change continuously during the course of a disease.

View Article and Find Full Text PDF

Malignant tumors have a high glucose demand and alter cellular metabolism to survive. Herein, focusing on the utility of glucose metabolism as a therapeutic target, we found that resveratrol induced endoplasmic reticulum (ER) stress-mediated apoptosis by interrupting protein glycosylation in a cancer-specific manner. Our results indicated that resveratrol suppressed the hexosamine biosynthetic pathway and interrupted protein glycosylation through GSK3β activation.

View Article and Find Full Text PDF