Publications by authors named "SooYoung Yum"

Gene therapy is a promising method for treating inherited diseases by directly delivering the correct genetic material into patient cells. However, the limited packaging capacity of vectors poses a challenge. Minimizing promoter size is a viable strategy among various approaches to address this issue.

View Article and Find Full Text PDF

The production of transgenic animals using non-viral methods has raised questions regarding their long-term health and genomic stability. In this study, we evaluated these aspects in transgenic cattle over ten years, using transposon-mediated gene transfer. Our longitudinal analysis included a comprehensive health assessment and whole-genome DNA resequencing.

View Article and Find Full Text PDF
Article Synopsis
  • Gene engineering in livestock aims to enhance productivity, disease resistance, and create models for biomedical research, benefiting agriculture and human health.
  • Enhanced genetic traits in livestock lead to better growth rates and feed efficiency, while disease resistance reduces infectious spread and antibiotic use, improving herd health and economics.
  • Advances in gene engineering techniques have shifted from cumbersome methods to more efficient, targeted approaches, and this paper reviews these technologies and their FDA-approved applications for humans.
View Article and Find Full Text PDF

Background: Genome editing has been considered as powerful tool in agricultural fields. However, genome editing progress in cattle has not been fast as in other mammal species, for some disadvantages including long gestational periods, single pregnancy, and high raising cost. Furthermore, technically demanding methods such as microinjection and somatic cell nuclear transfer (SCNT) are needed for gene editing in cattle.

View Article and Find Full Text PDF

Gene integration at site-specific loci is a critical approach for understanding the function of a gene in cells or animals. The locus is a well-known safe harbor for human and mouse studies. In this study, we found an -like sequence (p) in the porcine genome using the Genome Browser and designed TALEN and CRISPR/Cas9 to target the p.

View Article and Find Full Text PDF

Although the production of several founder animals (F0) for gene editing in livestock has been reported in cattle, very few studies have assessed germline transmission to the next generation due to the long sexual maturation and gestation periods. The present study aimed to assess the germline transmission of MSTN mutations (-12bps deletion) in MSTN mutant F0 male and female cattle. For this purpose, oocytes and semen were collected after the sexual maturation of MSTN cattle, and embryos produced by in vitro fertilization were analyzed.

View Article and Find Full Text PDF

Background: With unique genetic traits, Hanwoo cattle (Bos taurus coreanae) are well-adapted to the Korean environment. However, their perinatal mortality rate is 2%-3%, which imposes an economic burden.

Objective: Due to insufficient data on hormonal changes around parturition, the timing of parturition is often predicted subjectively; few studies have examined hormones in Hanwoo cattle.

View Article and Find Full Text PDF

Multiplex genome editing may induce genotoxicity and chromosomal rearrangements due to double-strand DNA breaks at multiple loci simultaneously induced by programmable nucleases, including CRISPR/Cas9. However, recently developed base-editing systems can directly substitute target sequences without double-strand breaks. Thus, the base-editing system is expected to be a safer method for multiplex genome-editing platforms for livestock.

View Article and Find Full Text PDF

Determining cell lineage and function is critical to understanding human physiology and pathology. Although advances in lineage tracing methods provide new insight into cell fate, defining cellular diversity at the mammalian level remains a challenge. Here, we develop a genome editing strategy using a cytidine deaminase fused with nickase Cas9 (nCas9) to specifically target endogenous interspersed repeat regions in mammalian cells.

View Article and Find Full Text PDF

The potential of induced pluripotent stem (iPS) cells, which have self-renewal ability and can differentiate into three germ layers, led us to hypothesize that iPS cells in pigs can be useful and suitable source for producing transgenic pigs. In this study, we generated iPS-like cells using doxycycline-inducible piggyBac (PB) expression vectors encoding porcine 4 transcription factors. After transfection, transfected cells were cultured until the formation of outgrowing colonies taking least of 7-10 days.

View Article and Find Full Text PDF

We prepared tetrahedral DNAzymes (TDzs) to overcome potential limitations such as insufficient serum stability and poor cellular uptake of single-stranded DNAzymes (ssDzs). TDzs showed enhanced serum stability and higher cellular uptake efficiency compared to those of ssDzs, providing significantly improved intracellular gene-silencing activity to down-regulate the target mRNA level.

View Article and Find Full Text PDF

Background: Transposon-mediated, non-viral gene delivery is a powerful tool for generating stable cell lines and transgenic animals. However, as multi-copy insertion is the preferred integration pattern, there is the potential for uncontrolled changes in endogenous gene expression and detrimental effects in cells or animals. Our group has previously reported on the generation of several transgenic cattle by using microinjection of the Sleeping Beauty (SB) and PiggyBac (PB) transposons and seeks to explore the long-term effects of this technology on cattle.

View Article and Find Full Text PDF

The production of transgenic farm animals (e.g., cattle) via genome engineering for the gain or loss of gene functions is an important undertaking.

View Article and Find Full Text PDF

Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) exhibit potency for the regeneration of infarcted hearts. Vascular endothelial growth factor (VEGF) is capable of inducing angiogenesis and can boost stem cell-based therapeutic effects. However, high levels of VEGF can cause abnormal blood vessel growth and hemangiomas.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) promote therapeutic angiogenesis to cure serious vascular disorders. However, their survival period and cytokine-secretory capacity are limited. Although hepatocyte growth factor (HGF) can accelerate the rate of angiogenesis, recombinant HGF is limited because of its very short half-life (<3-5 minutes).

View Article and Find Full Text PDF

Here, we efficiently generated transgenic cattle using two transposon systems (Sleeping Beauty and Piggybac) and their genomes were analyzed by next-generation sequencing (NGS). Blastocysts derived from microinjection of DNA transposons were selected and transferred into recipient cows. Nine transgenic cattle have been generated and grown-up to date without any health issues except two.

View Article and Find Full Text PDF

Animal models, particularly pigs, have come to play an important role in translational biomedical research. There have been many pig models with genetically modifications via somatic cell nuclear transfer (SCNT). However, because most transgenic pigs have been produced by random integration to date, the necessity for more exact gene-mutated models using recombinase based conditional gene expression like mice has been raised.

View Article and Find Full Text PDF

In animal reproduction technologies, the in vitro embryo culture system has advanced over the past few decades. However, in vitro cultured embryos still have reduced functional and physiological abilities compared with those from in vivo conditions, and many factors of oviduct and uterine environments have not yet been revealed. Here, we demonstrated the in vitro culture of domestic goat (Capra hircus) embryos using two types of culture media, modified synthetic oviductal fluid (mSOF) and a two-step chemically defined medium (DI/II).

View Article and Find Full Text PDF

Even though prion (encoded by the PRNP gene) diseases like bovine spongiform encephalopathy (BSE) are fatal neurodegenerative diseases in cattle, their study via gene deletion has been limited due to the absence of cell lines or mutant models. In this study, we aim to develop an immortalized fibroblast cell line in which genome-engineering technology can be readily applied to create gene-modified clones for studies. To this end, this study is designed to 1) investigate the induction of primary fibroblasts to immortalization by introducing Bmi-1 and hTert genes; 2) investigate the disruption of the PRNP in those cells; and 3) evaluate the gene expression and embryonic development using knockout (KO) cell lines.

View Article and Find Full Text PDF

Genome-editing technologies are considered to be an important tool for generating gene knockout cattle models. Here, we report highly efficient disruption of a chromosomally integrated eGFP gene in bovine somatic cells using RNA-guided endonucleases, a new class of programmable nucleases developed from a bacterial Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system. In the present study, we obtained homogenously eGFP-expressing primary fibroblasts from cloned bovine transgenic embryonic tissues and employed them for further analysis.

View Article and Find Full Text PDF