Background And Purpose: Robustness against input data perturbations is essential for deploying deep-learning models in clinical practice. Adversarial attacks involve subtle, voxel-level manipulations of scans to increase deep-learning models' prediction errors. Testing deep-learning model performance on examples of adversarial images provides a measure of robustness, and including adversarial images in the training set can improve the model's robustness.
View Article and Find Full Text PDFPassive temperature controls like passive daytime radiative cooling (PDRC)-heating (PDRH), and thermal insulation are essential to meet the growing demand for energy-efficient thermal solutions. When combined with advanced functions like electromagnetic interference shielding, these technologies can significantly enhance scalability. However, existing approaches using single thin films or uniform porous materials face inherent limitations in optimizing versatile functions, while lightweight, insulating aerogels can extend their multifunctionality by manipulating pores and fillers.
View Article and Find Full Text PDFThe primary practice of healthcare artificial intelligence (AI) starts with model development, often using state-of-the-art AI, retrospectively evaluated using metrics lifted from the AI literature like AUROC and DICE score. However, good performance on these metrics may not translate to improved clinical outcomes. Instead, we argue for a better development pipeline constructed by working backward from the end goal of positively impacting clinically relevant outcomes using AI, leading to considerations of causality in model development and validation, and subsequently a better development pipeline.
View Article and Find Full Text PDF: Intracerebral hemorrhages (ICH) and perihematomal edema (PHE) are respective imaging markers of primary and secondary brain injury in hemorrhagic stroke. In this study, we explored the potential added value of PHE radiomic features for prognostication in ICH patients. : Using a multicentric trial cohort of acute supratentorial ICH ( = 852) patients, we extracted radiomic features from ICH and PHE lesions on admission non-contrast head CTs.
View Article and Find Full Text PDFWater is pursued as an electrolyte solvent for its non-flammable nature compared to traditional organic solvents, yet its narrow electrochemical stability window (ESW) limits its performance. Solvation chemistry design is widely adopted as the key to suppress the reactivity of water, thereby expanding the ESW. In this study, an acetamide-based ternary eutectic electrolyte achieved an ESW ranging from 1.
View Article and Find Full Text PDFBackground: Intracranial multimodal monitoring (iMMM) is increasingly used in neurocritical care, but a lack of standardization hinders its evidence-based development. Here, we devised core outcome sets (COS) and reporting guidelines to harmonize iMMM practices and research.
Methods: An open, decentralized, three-round Delphi consensus study involved experts between December 2023 and June 2024.
Dual-ion batteries (DIBs) are emerging as promising candidates for fast-charging electric vehicles owing to their ability to intercalate both cations and anions. However, increasing the energy density of DIBs, especially with thick graphite cathodes, remains a challenge due to structural instability during anion intercalation. In this study, a magnetically controlled method is introduced to vertically align graphite particles in thick electrodes, significantly improving the performance of DIBs.
View Article and Find Full Text PDFObjective: Pediatric Veno-Arterial Extra Corporeal Membrane Oxygenation (VA ECMO) is a life saving technology associated with high mortality. A successful VA ECMO course requires attention to multiple aspects of patient care, including ECMO and patient parameters. Early, potentially modifiable, risk factors associated with patient mortality should be analyzed and adjusted for when assessing VA ECMO risk profiles.
View Article and Find Full Text PDFIn this study, diglycidylether of bisphenol A (DGEBA)/expanded graphite (EG)/copper (Cu) powder composites with high thermal conductivity were prepared for use as thermal interface materials. To construct an excellent thermally conductive network, the Cu surface was modified using the ionic liquid 1-ethyl-3-methyl imidazolium dicyanamide. In addition, the effect of the Cu content on the thermal conductivity, thermal stability, flexural properties, impact strength, and morphologies of the DGEBA/EG/Cu composites was investigated.
View Article and Find Full Text PDFStatus epilepticus (SE), a continuous and self-sustaining epileptic seizure lasting more than 30 min, is a neurological emergency that can cause severe brain injuries and increase the risk for the development of epilepsy. Over the past few decades, accumulating evidence has suggested the importance of brain inflammation in the pathogenesis of epilepsy. Honokiol (HNK), a pharmacological activator of sirtuin 3 (SIRT3), is a bioactive compound extracted from the bark or leaves of Magnolia plants that possesses therapeutic benefits for preventing the development of inflammatory injury.
View Article and Find Full Text PDFBackground: Brain activation to motor commands is seen in 15% of clinically unresponsive patients with acute brain injury. This state called cognitive motor dissociation (CMD) is detectable by electroencephalogram (EEG) or functional magnetic resonance imaging, predicts long-term recovery, and is recommended by recent guidelines to support prognostication. However, false negative CMD results are a particular concern, and occult aphasia in clinically unresponsive patients may be a major factor.
View Article and Find Full Text PDFCarbon materials and their hybrid metal composites have garnered significant attention in biomedical applications due to their exceptional biocompatibility. This biocompatibility arises from their inherent chemical stability and low toxicity within biological systems. This review offers a comprehensive overview of carbon nanomaterials and their metal composites, emphasizing their biocompatibility-focused applications, including drug delivery, bioimaging, biosensing, and tissue engineering.
View Article and Find Full Text PDFBackground: Hypoperfusion due to blood pressure (BP) reduction is a potential mechanism of cerebral ischemia after intracerebral hemorrhage. However, prior evaluations of the relationship between BP reduction and ischemia have been conflicting. Untreated chronic hypertension is common in intracerebral hemorrhage and alters cerebral autoregulation.
View Article and Find Full Text PDFHuman navigation heavily relies on visual information. Although many previous studies have investigated how navigational information is inferred from visual features of scenes, little is understood about the impact of navigational experience on visual scene representation. In this study, we examined how navigational experience influences both the behavioral and neural responses to a visual scene.
View Article and Find Full Text PDFAll-solid-state batteries (ASSBs) possess the advantage of ensuring safety while simultaneously maximizing energy density, making them suitable for next-generation battery models. In particular, sulfide solid electrolytes (SSEs) are viewed as promising candidates for ASSB electrolytes due to their excellent ionic conductivity. However, a limitation exists in the form of interfacial side reactions occurring between the SSEs and cathode active materials (CAMs), as well as the generation of sulfide-based gases within the SSE.
View Article and Find Full Text PDFCardiac Index (CI) is a key physiologic parameter to ensure end organ perfusion in the pediatric intensive care unit (PICU). Determination of CI requires invasive cardiac measurements and is not routinely done at the PICU bedside. To date, there is no gold standard non-invasive means to determine CI.
View Article and Find Full Text PDFNumerous challenges, like the uninterrupted supply of electricity, stable and reliable power, and energy storage during non-operational hours, arise across various industries due to the absence of advanced energy storage technologies. With the continual technological advancements in portable electronics, green energy, and transportation, there are inherent limitations in their innovative production. Thus, ongoing research is focused on pursuing sustainable energy storage technologies.
View Article and Find Full Text PDFBackground: Viscoelastic hemostatic assays (VHAs) provide more comprehensive assessments of coagulation compared with conventional coagulation assays. Although VHAs have enabled guided hemorrhage control therapies, improving clinical outcomes in life-threatening hemorrhage, the role of VHAs in intracerebral hemorrhage (ICH) is unclear. If VHAs can identify coagulation abnormalities relevant for ICH outcomes, this would support the need to investigate the role of VHAs in ICH treatment paradigms.
View Article and Find Full Text PDF