Publications by authors named "Soo-Yeon Seo"

In this study, the short-term creep effect (STCE) on strain transfer from fiber-reinforced polymer (FRP) strips to fiber Bragg grating-optical fiber (FBG-OF) sensors was investigated. Thirty OF sensors attached to FRP strips were investigated through three primary test parameters: bond length (40, 60, 80, 100, 120, and 150 mm); adhesive type (epoxy resin, CN adhesive, and epoxy resin combined with CN adhesive); and bonding method (embedded and external bonding methods). The strain transfer ability of the OF sensors was evaluated based on the strain ratio of the OF sensor to the FRP strip under different sustained stresses of 20, 40, 50, and 60% of the FRP ultimate tensile strength (f).

View Article and Find Full Text PDF

Various researches have been performed to find an effective confining method using FRP sheet in order to improve the structural capacity of reinforced concrete column. However, most of these researches were undertaken for the columns subjected to concentric compressive load or fully confined RC columns. To date, it remains hard to find studies on partially FRP-confined RC columns under eccentric load.

View Article and Find Full Text PDF

This study analyzed the influence of carbon nanotubes (CNTs) on the carbonation conductive cementitious composites. Two powder types of CNT, multi-walled and single-wall CNTs, were employed to give the cement mortar the conductivity, and four tests including the accelerated carbonation, compressive and flexural strength, electrical resistance, and porosity tests were carried out. To intentionally accelerate the carbonation, the prismatic specimens of conductive cement composites were fabricated and stored in the controlled environmental chamber at a constant temperature of 20 ± 2 °C, constant relative humidity of 60 ± 5%, and carbon dioxide (CO) concentration of 5% for 12 weeks.

View Article and Find Full Text PDF

To date, a method of attaching a FRP (fiber-reinforced polymer) to concrete members with epoxy has been widely applied to increase the strength of the member. However, there are cases in which the adhesion of the epoxy deteriorates over time and the reinforcing effect of the FRP is gradually lost. Therefore, monitoring whether or not the reinforcing effect is properly maintained is needed in order to prevent a decrease in the structural performance of the member improved by FRP reinforcement.

View Article and Find Full Text PDF

The time-sequential change in immune-related gene expression of the glioblastoma cell line after irradiation was evaluated to speculate the effect of combined immunotherapy with radiotherapy. The U373 MG glioblastoma cell line was irradiated with 6 Gy single dose. Next-generation sequencing (NGS) transcriptome data was generated before irradiation (control), and at 6, 24, and 48 h post-irradiation.

View Article and Find Full Text PDF

In this study, shear tests were conducted to investigate the effects of longitudinal reinforcement corrosion on the shear capacity of reinforced concrete (RC) members with transverse reinforcement. To this end, a total of eight test specimens were fabricated, and the corrosion rates and anchorage details of rebars were set as test variables. In addition, an accelerated corrosion technique was used to introduce corrosion into the longitudinal reinforcement without corroding shear reinforcement.

View Article and Find Full Text PDF

Purpose: Glioblastoma, the most common brain tumor in adults, has poor prognosis. The purpose of this study was to determine the effect of disulfiram (DSF), an aldehyde dehydrogenase inhibitor, on in vitro radiosensitivity of glioblastoma cells with different methylation status of O6-methylguanine-DNA methyltransferase (MGMT) promoter and the underlying mechanism of such effect.

Materials And Methods: Five human glioblastoma cells (U138MG, T98G, U251MG, U87MG, and U373MG) and one normal human astrocyte (NHA) cell were cultured and treated with DSF or 6MV X-rays (0, 2, 4, 6, and 8 Gy).

View Article and Find Full Text PDF

Conventional methods for seismic retrofitting of concrete columns include reinforcement with steel plates or steel frame braces, as well as cross-sectional increments and in-filled walls. However, these methods have some disadvantages, such as the increase in mass and the need for precise construction. Fiber-reinforced polymer (FRP) sheets for seismic strengthening of concrete columns using new light-weight composite materials, such as carbon fiber or glass fiber, have been developed, have excellent durability and performance, and are being widely applied to overcome the shortcomings of conventional seismic strengthening methods.

View Article and Find Full Text PDF

In this study, hydrophilic chemical grout using silanol (HCGS) was adopted to overcome the performance limitations of epoxy materials used for strengthening existing buildings and civil engineering structures. The enhanced material performances of HCGS were introduced, and applied to the section enlargement method, which is one of the typical structural strengthening methods used in practice. To evaluate the excellent structural strengthening performance of the HCGS, structural tests were conducted on reinforced concrete beams, and analyses on the flexural behaviors of test specimens were performed by modified partial interaction theory (PIT).

View Article and Find Full Text PDF

Recognizing that steel fibers can supplement the brittle tensile characteristics of concrete, many studies have been conducted on the shear performance of steel fiber reinforced concrete (SFRC) members. However, previous studies were mostly focused on the shear strength and proposed empirical shear strength equations based on their experimental results. Thus, this study attempts to estimate the strains and stresses in steel fibers by considering the detailed characteristics of steel fibers in SFRC members, from which more accurate estimation on the shear behavior and strength of SFRC members is possible, and the failure mode of steel fibers can be also identified.

View Article and Find Full Text PDF

Objectives: To study the effects of zinc treatment on the gene expression levels of survivin and Bcl-2 in prostate cancer cells.

Materials And Methods: The effects of zinc exposure on apoptosis were assessed using two human prostate cancer cell lines, LNCaP and PC-3. Zinc-induced apoptosis was measured by Annexin V staining.

View Article and Find Full Text PDF