3D-printed bioceramic scaffolds offer great potential for bone tissue engineering (BTE) but their inherent brittleness and reduced mechanical properties at high porosities can easily result in catastrophic fractures. Herein, this study presents a hierarchical hydrogel impregnation strategy, incorporating poly(vinyl alcohol) (PVA) hydrogel into the macro- and micropores of bioceramic scaffolds and synergistically reinforcing it via freeze-casting assisted solution substitution (FASS) in a tannic acid (TA)-glycerol solution. By effectively mitigating catastrophic brittle failures, the hydrogel-impregnated scaffolds showcase three- and 100-fold enhancement in mechanical energy absorption under compression (5.
View Article and Find Full Text PDFThe emergence of nanosheet materials like graphene and phosphorene, which are created by breaking the interlayer van der Waals force, has revolutionized multiple fields. Layered inorganic materials are ubiquitous in materials like bioceramics, semiconductors, superconductors, etc. However, the strong interlayer covalent or ionic bonding in these crystals makes it difficult to fabricate nanosheets from them.
View Article and Find Full Text PDFThree-dimensional (3D) bioprinting is an advanced technology to fabricate artificial 3D tissue constructs containing cells and hydrogels for tissue engineering and regenerative medicine. Nanocomposite reinforcement endows hydrogels with superior properties and tailored functionalities. A broad range of nanomaterials, including silicon-based, ceramic-based, cellulose-based, metal-based, and carbon-based nanomaterials, have been incorporated into hydrogel networks with encapsulated cells for improved performances.
View Article and Find Full Text PDFpersists in a dormant state with a protective cyst wall for transmission. It is incompletely known how three cyst wall proteins (CWPs) are coordinately synthesized during encystation. Meiotic recombination is required for sexual reproduction in animals, fungi, and plants.
View Article and Find Full Text PDFImportance: Three-dimensionally printed nasopharyngeal swabs (3DP swabs) have been used to mitigate swab shortages during the coronavirus disease 2019 (COVID-19) pandemic. Clinical validation for diagnostic accuracy and consistency, as well as patient acceptability, is crucial to evaluate the swab's performance.
Objective: To determine the accuracy and acceptability of the 3DP swab for identifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Biochim Biophys Acta Gen Subj
June 2021
Background: Giardia lamblia differentiates into resistant cysts as an established model for dormancy. Myeloid leukemia factor (MLF) proteins are important regulators of cell differentiation. Giardia possesses a MLF homolog which was up-regulated during encystation and localized to unknown cytosolic vesicles named MLF vesicles (MLFVs).
View Article and Find Full Text PDFGiardia lamblia becomes dormant by differentiation into a water-resistant cyst that can infect a new host. Synthesis of three cyst wall proteins (CWPs) is the fundamental feature of this differentiation. Myeloid leukemia factor (MLF) proteins are involved in cell differentiation, and tumorigenesis in mammals, but little is known about its role in protozoan parasites.
View Article and Find Full Text PDF