Publications by authors named "Soo-Hyeon Kim"

Compartmentalization of multiple single cells and/or single microbeads holds significant potential for advanced biological research including single-cell transcriptome analysis or cell-cell interactions. To ensure reliable analysis and prevent misinterpretation, it is essential to achieve highly efficient pairing or combining of single objects. In this paper, we introduce a novel microfluidic device coupled with a multilayer interconnect Si/SiO control circuit, named the deterministic single-cell combinatorial reactor (DSCR) device, for the highly efficient combination of multiple single cells.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) is posing a serious public health concern with a considerable impact on human life and health expenditures worldwide. The disease develops when insulin plasma level is insufficient for coping insulin resistance, caused by the decline of pancreatic β-cell function and mass. In β-cells, the lipotoxicity exerted by saturated free fatty acids in particular palmitate (PA), which is chronically elevated in T2D, plays a major role in β-cell dysfunction and mass.

View Article and Find Full Text PDF

Availability of hepatic tissue for the investigation of metabolic processes is severely limited. While primary hepatocytes or animal models are widely used in pharmacological applications, a change in methodology towards more sustainable and ethical assays is highly desirable. Stem cell derived hepatic cells are generally regarded as a viable alternative for the above model systems, if current limitations in functionality and maturation can be overcome.

View Article and Find Full Text PDF

Our recent discovery of decreased reorganization energy in electrode-tethered redox-DNA systems prompts inquiries into the origin of this phenomenon and suggests its potential use to lower the activation energy of electrochemical reactions. Here, we show that the confinement of the DNA chain in a nanogap amplifies this effect to an extent to which it nearly abolishes the intrinsic activation energy of electron transfer. Employing electrochemical atomic force microscopy (AFM-SECM), we create sub-10 nm nanogaps between a planar electrode surface bearing end-anchored ferrocenylated DNA chains and an incoming microelectrode tip.

View Article and Find Full Text PDF

Commencing with the breakdown of immune tolerance, multiple pathogenic factors, including synovial inflammation and harmful cytokines, are conjointly involved in the progression of rheumatoid arthritis. Intervening to mitigate some of these factors can bring a short-term therapeutic effect, but other unresolved factors will continue to aggravate the disease. Here we developed a ceria nanoparticle-immobilized mesenchymal stem cell nanovesicle hybrid system to address multiple factors in rheumatoid arthritis.

View Article and Find Full Text PDF

More specific screening systems for cervical cancer may become necessary as the human papillomavirus (HPV) vaccine becomes more widespread. Although p16/Ki-67 dual-staining cytology has several advantages, it requires advanced diagnostic skills. Here, we developed an automated on-chip immunostaining method using a microfluidic device.

View Article and Find Full Text PDF

Correction for 'Generation of β-like cell subtypes from differentiated human induced pluripotent stem cells in 3D spheroids' by Lisa Morisseau , , 2023, https://doi.org/10.1039/d3mo00050h.

View Article and Find Full Text PDF

Theoretical treatments of polymer dynamics in liquid generally start with the basic assumption that motion at the smallest scale is heavily overdamped; therefore, inertia can be neglected. We report on the Brownian motion of tethered DNA under nanoconfinement, which was analyzed by molecular dynamics simulation and nanoelectrochemistry-based single-electron shuttle experiments. Our results show a transition into the ballistic Brownian motion regime for short DNA in sub-5 nm gaps, with quality coefficients as high as 2 for double-stranded DNA, an effect mainly attributed to a drastic increase in stiffness.

View Article and Find Full Text PDF

Since the identification of four different pancreatic β-cell subtypes and bi-hormomal cells playing a role in the diabetes pathogenesis, the search for models that mimics such cells heterogeneity became a key priority in experimental and clinical diabetology. We investigated the potential of human induced pluripotent stem cells to lead to the development of the different β-cells subtypes in honeycomb microwell-based 3D spheroids. The glucose-stimulated insulin secretion confirmed the spheroids functionality.

View Article and Find Full Text PDF

Despite several demonstrations of electrochemical devices with limits of detection (LOD) of 1 cell/mL, the implementation of single-cell bioelectrochemical sensor arrays has remained elusive due to the challenges of scaling up. In this study, we show that the recently introduced nanopillar array technology combined with redox-labeled aptamers targeting epithelial cell adhesion molecule (EpCAM) is perfectly suited for such implementation. Combining nanopillar arrays with microwells determined for single cell trapping directly on the sensor surface, single target cells are successfully detected and analyzed.

View Article and Find Full Text PDF

Redox monolayers are the base for a wide variety of devices including high-frequency molecular diodes or biomolecular sensors. We introduce a formalism to describe the electrochemical shot noise of such a monolayer, confirmed experimentally at room temperature in liquid. The proposed method, carried out at equilibrium, avoids parasitic capacitance, increases the sensitivity, and allows us to obtain quantitative information such as the electronic coupling (or standard electron transfer rates), its dispersion, and the number of molecules.

View Article and Find Full Text PDF

Droplet microfluidics has become a powerful tool in life sciences, underlying digital assays, single-cell sequencing or directed evolution, and it is making foray in physical sciences as well. Imaging and incubation of droplets are crucial, yet they are encumbered by the poor optical, thermal and mechanical properties of PDMS, a material commonly used in microfluidics labs. Here we show that Si is an ideal material for droplet chambers.

View Article and Find Full Text PDF

The tea plant (Camellia sinensis (L.) O. Kuntze) is a popular non-alcoholic beverage crop worldwide.

View Article and Find Full Text PDF

The mechanism responsible for electron transport within layers of redox DNA anchored to electrodes has been extensively studied over the last twenty years, but remains controversial. Herein, we thoroughly study the electrochemical behavior of a series of short, model, ferrocene (Fc) end-labeled dT oligonucleotides, terminally attached to gold electrodes, using high scan rate cyclic voltammetry complemented by molecular dynamics simulations. We evidence that the electrochemical response of both single-stranded and duplexed oligonucleotides is controlled by the electron transfer kinetics at the electrode, obeying Marcus theory, but with reorganization energies considerably lowered by the attachment of the ferrocene to the electrode the DNA chain.

View Article and Find Full Text PDF

Aim: Hepatic zonation is a physiological feature of the liver, known to be key in the regulation of the metabolism of nutrients and xenobiotics and the biotransformation of numerous substances. However, the reproduction of this phenomenon remains challenging in vitro as only part of the processes involved in the orchestration and maintenance of zonation are fully understood. The recent advances in organ-on-chip technologies, which allow for the integration of multicellular 3D tissues in a dynamic microenvironment, could offer solutions for the reproduction of zonation within a single culture vessel.

View Article and Find Full Text PDF
Article Synopsis
  • Podocytes are important for understanding kidney disease and proteinuria, and recent research involves creating a glomerulus-on-a-chip to study them without using animals.
  • A new filtration culture device allows researchers to control filtration flow and maintain the integrity of mouse podocytes for up to three days.
  • The study finds that hyperfiltration damages podocytes and influences their maturation and drug response, highlighting the importance of filtration effects in podocyte mechanobiology.
View Article and Find Full Text PDF

When biologically interpretation of the data obtained from the single-cell RNA sequencing (scRNA-seq) analysis is attempted, additional information on the location of the single cells, behavior of the surrounding cells, and the microenvironment they generate, would be very important. We developed an inexpensive, high throughput application while preserving spatial organization, named "semibulk RNA-seq" (sbRNA-seq). We utilized a microfluidic device specifically designed for the experiments to encapsulate both a barcoded bead and a cell aggregate (a semibulk) into a single droplet.

View Article and Find Full Text PDF

Functional differentiation of pancreatic like tissue from human induced pluripotent stem cells is one of the emerging strategies to achieve an pancreas model. Here, we propose a protocol to cultivate hiPSC-derived β-like-cells coupling spheroids and microfluidic technologies to improve the pancreatic lineage maturation. The protocol led to the development of spheroids producing the C-peptide and containing cells positive to insulin and glucagon.

View Article and Find Full Text PDF

The importance of circulating tumor cells (CTCs) as biomarkers has been greatly increased for early diagnosis and detection of cancer metastases. Along with a single form of CTCs, CTC clusters have recently attracted much attention due to their characteristics, such as suppression of apoptosis and survival from immune responses with high metastatic potential. Thus, it is highly necessary to investigate not only single cells but clustered cells at the same time to perform precise analysis of the current cancer state and develop suitable treatment.

View Article and Find Full Text PDF

Circulating cell-free DNA (cfDNA) has been implicated as an important biomarker and has been intensively studied for "liquid biopsy" applications in cancer diagnostics. Owing to its small fragment size and its low concentration in circulation, cfDNA extraction and purification from serum samples are complicated, and the extraction yield affects the precision of subsequent molecular diagnostic tests. Here, we report a novel approach using nitrogen-mustard-coated DNA capture beads (NMD beads) that covalently capture DNA and allow direct subsequent polymerase chain reaction (PCR) amplification from the NMD bead without elusion.

View Article and Find Full Text PDF
Article Synopsis
  • * Plasma-treated water (PTW) was used in our research to enhance degradation performance, utilizing active species like hydroxyl radicals and ozone, instead of costly chemicals like hydrogen peroxide.
  • * The optimal conditions with PTW achieved over 99% removal of reactive black 5 and about 96.5% of tetracycline in just 25 minutes, significantly improving removal rates compared to methods without PTW.
View Article and Find Full Text PDF
Article Synopsis
  • Droplet microfluidics is a versatile technique used in biomedical and industrial fields for tasks like single-cell analysis and metabolic engineering, with droplet sorting being key for isolating specific small droplets.
  • Recent efforts focus on sorting larger droplets to leverage their size, but achieving high sorting throughput has been challenging.
  • A new upgraded fluorescence-activated droplet sorting system, featuring more electrodes and a slanted microchannel, successfully sorted 1 nL droplets at a record rate of 1752 droplets per second, doubling the previous maximum throughput.
View Article and Find Full Text PDF

Obesity is a major health condition owing to its effects on chronic diseases and cancers in humans, but little information is available regarding the role of obesity in canine mammary cancer (CMC). In the present study, we performed immunohistochemistry to investigate the effect of obesity on CMC by analyzing the number of tumor-associated macrophages, intratumoral microvessel density (iMVD), and the expression of prognostic factors including epidermal growth factor receptor (EGFR), cyclooxygenase 2 (COX-2), and Ki67 in CMC specimens. These data were compared in CMC specimens from lean or ideal body weight (Group 1) versus overweight or obese (Group 2) female dogs ( = 60 for each group).

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma is the most common primary hepatic malignancy in humans and dogs. Several differentially expressed molecules have been studied and reported in human hepatocellular carcinoma and non-neoplastic liver lesions. However, studies on the features of canine hepatocellular carcinoma are limited, especially related to the differential characteristics of neoplastic and non-neoplastic lesions.

View Article and Find Full Text PDF