In the face of increasing nitrogen demand for crop cultivation driven by population growth, this study presents a sustainable solution to address both the heightened demand and the energy-intensive process of nitrogen removal from wastewater. Our approach involves the removal of nitrogen from wastewater and its subsequent return to the soil as a fertilizer. Using biochar derived from Aesculus turbinata fruit shells (ATFS), a by-product of post-medical use, we investigated the effect of pyrolysis temperature on the NH-N adsorption capacity of ATFS biochar (ATFS-BC).
View Article and Find Full Text PDFQuercus wood was used for thermal energy production, and wood bottom ash (WDBA) was used as a medium for water purification and soil fertilizer in accordance with the recently proposed food-water-energy nexus concept. The wood contained a gross calorific value of 14.83 MJ kg, and the gas generated during thermal energy production has the advantage of not requiring a desulfurization unit due to its low sulfur content.
View Article and Find Full Text PDFThis study addresses ways to circulate the flow of phosphorus (P) from water to soil to improve water quality and provide a sustainable supply of P into soil. Here, bottom ash (BA_CCM), the byproduct of the combustion of cattle manure, which is performed for obtaining energy, was used to remove P in wastewater. Next, the P-captured BA_CCM was used as P fertilizer for rice growth.
View Article and Find Full Text PDFHeading date (Hd) is one of the main factors determining rice production and regional adaptation. To identify the genetic factors involved in the wide regional adaptability of rice, we conducted a genome-wide association study (GWAS) with 190 North Korean rice accessions selected for non-precocious flowering in the Philippines, a low-latitude region. Using both linear mixed models (LMM) and fixed and random model circulating probability unification (FarmCPU), we identified five significant loci for Hd in trials in 2018 and 2019.
View Article and Find Full Text PDFSuccessful cultivation of rice (Oryza sativa L.) in many Asian countries requires submergence stress tolerance at the germination and early establishment stages. Two quantitative trait loci, Sub1 (conferring submergence tolerance) and AG1 (conferring anaerobic germination), were recently pyramided into a single genetic background, without compromising any desirable agronomic traits, leading to the development of Ciherang-Sub1 + AG1 (CSA).
View Article and Find Full Text PDFDuring crop cultivation, water-deficit conditions retard growth, thus reducing crop productivity. Therefore, uncovering the mechanisms behind drought tolerance is a critical task for crop improvement. Here, we show that the rice (Oryza sativa) WRKY transcription factor OsWRKY5 negatively regulates drought tolerance.
View Article and Find Full Text PDFThis study investigated the solution for two environmental issues: excess of P in water and its deficiency in soil, which is restored by transferring the adsorbed P from water into the soil using eggshell as an adsorbent. The eggshells were calcined at different temperatures to improve their adsorption capacity, and evaluated for their physical/chemical properties and P adsorption capacity. The eggshells calcined at 800 °C (CES-800) had the highest P adsorption; CaCO decomposed into 23.
View Article and Find Full Text PDFPyramiding useful QTLs into an elite variety is a promising strategy to develop tolerant varieties against multiple abiotic stresses. However, some QTLs may not be functionally compatible when they are introgressed into the same variety. Here, we tested the functional compatibility of and , major QTLs for tolerance to phosphorus (P)-deficiency and submergence conditions, respectively.
View Article and Find Full Text PDFGenetic studies have revealed that chromatin modifications affect flowering time, but the underlying mechanisms by which chromatin remodeling factors alter flowering remain largely unknown in rice (). Here, we show that Rolled Fine Striped (RFS), a chromodomain helicase DNA-binding 3 (CHD3)/Mi-2 subfamily ATP-dependent chromatin remodeling factor, promotes flowering in rice. Diurnal expression of peaked at night under short-day (SD) conditions and at dawn under long-day (LD) conditions.
View Article and Find Full Text PDFWe investigated the application of cheap but efficient sepiolite for the removal of phosphate and the use of phosphate-adsorbed sepiolite for rice cultivation. Sepiolite was calcined under different temperatures to improve its phosphate adsorption capacity; the sepiolite calcined at 950 °C (950-SPL) was found to have highest adsorption capacity. As the calcination temperature increased, the amount of Ca eluted from sepiolite also increased, resulting in the formation of Ca-P precipitates.
View Article and Find Full Text PDFExpansins are key regulators of cell-wall extension and are also involved in the abiotic stress response. In this study, we evaluated the function of involved in salt stress tolerance. Phenotypic analysis showed that overexpression remarkably enhanced tolerance to salt stress.
View Article and Find Full Text PDFChlorophyll breakdown is a vital catabolic process of leaf senescence as it allows the recycling of nitrogen and other nutrients. In the present study, we isolated rice senescence-induced receptor-like kinase (), whose transcription was upregulated in senescing rice leaves. The detached leaves of mutant () contained more green pigment than those of the wild type (WT) during dark-induced senescence (DIS).
View Article and Find Full Text PDFMitochondrial DNA B Resour
November 2017
Rice () is the predominant staple food crop belonging to the Poaceae family. In this study, complete chloroplast genome sequence of -type variety Nagina-22 was characterized through assembly. The genome is a circular DNA molecule of 134,503 bp and has typical quadripartite structures including large single copy region (80,548 bp), small single copy region (12,347 bp), and a pair of inverted repeats (20,804 bp).
View Article and Find Full Text PDFLesion mimic mutants commonly display spontaneous cell death in pre-senescent green leaves under normal conditions, without pathogen attack. Despite molecular and phenotypic characterization of several lesion mimic mutants, the mechanisms of the spontaneous formation of cell death lesions remain largely unknown. Here, the rice lesion mimic mutant spotted leaf3 (spl3) was examined.
View Article and Find Full Text PDFArabidopsis flowers early under long days (LD) and late under short days (SD). The repressor of photomorphogenesis DE-ETIOLATED1 (DET1) delays flowering; det1-1 mutants flower early, especially under SD, but the molecular mechanism of DET1 regulation remains unknown. Here we examine the regulatory function of DET1 in repression of flowering.
View Article and Find Full Text PDFIn the facultative long-day (LD) plant Arabidopsis thaliana, FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) is activated by blue light and promotes flowering through the transcriptional and post-translational regulation of CONSTANS under inductive LD conditions. By contrast, the facultative short day (SD) plant rice (Oryza sativa) flowers early under inductive SD and late under non-inductive LD conditions; the regulatory function of OsFKF1 remains elusive. Here we show that osfkf1 mutants flower late under SD, LD and natural LD conditions.
View Article and Find Full Text PDFFlowering time (or heading date) is controlled by intrinsic genetic programs in response to environmental cues, such as photoperiod and temperature. Rice, a facultative short-day (SD) plant, flowers early in SD and late in long-day (LD) conditions. Casein kinases (CKs) generally act as positive regulators in many signaling pathways in plants.
View Article and Find Full Text PDFChlorophyll (Chl) degradation causes leaf yellowing during senescence or under stress conditions. For Chl breakdown, STAY-GREEN1 (SGR1) interacts with Chl catabolic enzymes (CCEs) and light-harvesting complex II (LHCII) at the thylakoid membrane, possibly to allow metabolic channeling of potentially phototoxic Chl breakdown intermediates. Among these Chl catabolic components, SGR1 acts as a key regulator of leaf yellowing.
View Article and Find Full Text PDFPlant breeders have focused on improving plant architecture as an effective means to increase crop yield. Here, we identify the main-effect quantitative trait loci (QTLs) for plant shape-related traits in rice (Oryza sativa) and find candidate genes by applying whole genome re-sequencing of two parental cultivars using next-generation sequencing. To identify QTLs influencing plant shape, we analyzed six traits: plant height, tiller number, panicle diameter, panicle length, flag leaf length, and flag leaf width.
View Article and Find Full Text PDFCoordinated regulation of the many genes controlling leaf, flower, and root development determines the phenotypes of plants; this regulation requires exquisite control of many transcription factors, including the WUSCHEL-related homeobox (WOX) family. We recently reported that rice (Oryza sativa) WUSCHEL-related homeobox 3A (OsWOX3A) plays important roles in organ development, including lateral-axis outgrowth and vasculature patterning in leaves, lemma and palea morphogenesis in spikelets, and the numbers of tillers and lateral roots. OsWOX3A is encoded by NARROW LEAF2 (NAL2) and NAL3, a pair of duplicated genes.
View Article and Find Full Text PDFPlant Cell Physiol
October 2013
The highly ordered process of senescence forms the final stage of leaf development; a large set of senescence-associated genes (SAGs) execute this orderly dismantling of the photosynthetic apparatus and remobilization of cellular components. A number of transcription factors (TFs) modulate SAG expression to promote or delay senescence. Here we show that NAC016, the previously uncharacterized senescence-associated NAM/ATAF1/2/CUC2 (senNAC) TF in Arabidopsis thaliana, promotes senescence.
View Article and Find Full Text PDFNatural variation in heading-date genes enables rice, a short-day (SD) plant, to flower early under long-day (LD) conditions at high latitudes. Through analysis of heading-date quantitative trait loci (QTL) with F7 recombinant inbred lines from the cross of early heading 'H143' and late heading 'Milyang23 (M23)', we found a minor-effect Early Heading3 (EH3) QTL in the Hd16 region on chromosome 3. We found that Early flowering1 (EL1), encoding casein kinase I (CKI), is likely to be responsible for the EH3/Hd16 QTL, because a missense mutation occurred in the highly conserved serine/threonine kinase domain of EL1 in H143.
View Article and Find Full Text PDF