Publications by authors named "Soo Zeng Fiona Phua"

A nanoscale therapeutic system with good biocompatibility was facilely fabricated by the coassembly of human serum albumin and glucose oxidase (GOD), where the former was pretreated with metal ions through a chelating agent or the chemotherapeutic prodrug oxaliplatin (Oxa(IV)). Among different chelating metal ions used, Mn ion was selected to produce hydroxyl radical (•OH) efficiently through Fenton-like reaction, while GOD loaded in the system was able to generate a large amount of hydrogen peroxide for promoting efficient conversion into highly toxic •OH. In the meanwhile, the conversion of the Oxa(IV) prodrug into chemotherapeutic Oxa(II) was beneficial for the consumption of glutathione, thereby enhancing the chemodynamic therapy (CDT) efficacy.

View Article and Find Full Text PDF

Hypoxia of solid tumor compromises the therapeutic outcome of photodynamic therapy (PDT) that relies on localized O molecules to produce highly cytotoxic singlet oxygen (O) species. Herein, we present a safe and versatile self-assembled PDT nanoagent, i.e.

View Article and Find Full Text PDF

Responsive delivery of anticancer proteins into cells is an emerging field in biological therapeutics. Currently, the delivery of proteins is highly compromised by multiple successive physiological barriers that reduce the therapeutic efficacy. Hence, there is a need to design a robust and sustainable nanocarrier to provide suitable protection of proteins and overcome the physiological barriers for better cellular accumulation.

View Article and Find Full Text PDF

Developing artificial systems to mimic the emergence of chirality is of vital importance in better understanding the mysterious origin of natural homochirality and guiding the design of advanced chiroptical materials. Herein, we present a DNA-inspired control over the emergence of supramolecular nanoscale chirality in multiple hydrogen-bonded self-assemblies. N-Terminated aromatic amino acids bearing serine and aromatic domains could self-assemble into lamellar microsheets without nanoscale chirality, ascribed to their pronounced molecular stacking preference on two-dimensional orientations.

View Article and Find Full Text PDF

Tumor hypoxia compromises the therapeutic efficiency of photodynamic therapy (PDT) as the local oxygen concentration plays an important role in the generation of cytotoxic singlet oxygen ( O ). Herein, a versatile mesoporous nanoenzyme (NE) derived from metal-organic frameworks (MOFs) is presented for in situ generation of endogenous O to enhance the PDT efficacy under bioimaging guidance. The mesoporous NE is constructed by first coating a manganese-based MOFs with mesoporous silica, followed by a facile annealing process under the ambient atmosphere.

View Article and Find Full Text PDF

Uncontrolled cancer cell proliferation, insufficient blood flow, and inadequate endogenous oxygen lead to hypoxia in tumor tissues. Herein, a unique type of hypoxia-responsive human serum albumin (HSA)-based nanosystem (HCHOA) is reported, prepared by cross-linking the hypoxia-sensitive azobenzene group between photosensitizer chlorin e6 (Ce6)-conjugated HSA (HC) and oxaliplatin prodrug-conjugated HSA (HO). The HCHOA nanosystem is stable under normal oxygen partial pressure with a size of 100-150 nm.

View Article and Find Full Text PDF

Nanomedicine has emerged as a promising strategy for effective cancer treatment. A useful approach is to develop carrier-free nanodrugs via a facile supramolecular self-assembly process. To achieve high therapeutic effect, integrating photodynamic therapy with chemotherapy has been sought after.

View Article and Find Full Text PDF

The co-delivery of photosensitizers with prodrugs sensitive to reactive oxygen species (ROS) for light-triggered ROS generation and cascaded prodrug activation has drawn tremendous attention. However, the absence of a feasible method to deliver the two components at a precise ratio has impaired the application potential. Herein, we report an efficient method to produce a nanosized platform for the delivery of an optimized ratio of the two components by the means of host-guest strategy for maximizing the combination therapy efficacy of cancer treatment.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) as a treatment method has many advantages such as minimal invasiveness, repeatable dosage, and low systemic toxicity. Issues with conventional PDT agents include the limited availability of endogenous oxygen and difficulty in accumulation at the tumor site, which has hindered the successful treatment of tumors. Herein, we developed catalase-encapsulated hyaluronic-acid-based nanoparticles loaded with adamantane-modified photosensitizer for enhanced PDT of solid tumors.

View Article and Find Full Text PDF

Inorganic nanoparticles with tunable and diverse properties hold tremendous potential in the field of nanomedicine, while having non-negligible toxicity concerns in healthy tissues/organs that have resulted in their restricted clinical translation to date. In the past decade, the emergence of biodegradable or clearable inorganic nanoparticles has made it possible to completely solve this long-standing conundrum. A comprehensive understanding of the design of these inorganic nanoparticles with their metabolic performance in the body is of crucial importance to advance clinical trials and expand their biological applications in disease diagnosis.

View Article and Find Full Text PDF

A redox-responsive supramolecular nanocarrier was constructed from the self-assembly of spermine modified cyclodextrin and oxaliplatin prodrug. The nanocarrier could preferentially accumulate in polyamine transporter over-expressing HCT116 cells, releasing drugs under a reducing intracellular environment to maximize anticancer treatment.

View Article and Find Full Text PDF

Construction of integrated self-assembly with ordered structures from two or more organic building blocks is currently a challenge, since it suffers from intrinsic systematic complexity and diverse competitive pathways. Here, it is reported that aromatic amino acid building units can be incorporated into two- or three-component coassembly driven primarily by hydrogen bonding interactions without the assistance of metal-ligand and macrocycle-based host-guest interactions. The key strategy is to employ a C -symmetric molecule with alternative hydrogen bonding donor/acceptor sites that are able to bind either carboxylic acid or pyridine appended building units.

View Article and Find Full Text PDF

Ultralong room temperature phosphorescence (URTP) emitted from pure amorphous organic molecules is very rare. Although a few crystalline organic molecules could realize URTP with long lifetimes (>100 ms), practical applications of these crystalline organic phosphors are still challenging because the formation and maintenance of high-quality crystals are very difficult and complicated. Herein, we present a rational design for minimizing the vibrational dissipation of pure amorphous organic molecules to achieve URTP.

View Article and Find Full Text PDF

Determination of molecular structural parameters of hydrophobic cholesterol-naphthalimide conjugates for water binding capabilities as well as their moisture-sensitive supramolecular self-assembly were revealed. Water binding was a key factor in leading trace water-induced crystallization against gelation in apolar solvent. Ordered water molecules entrapped in self-assembly arrays revealed by crystal structures behave as hydrogen-bonding linkers to facilitate three-dimensional growth into crystals rather than one-dimensional gel nanofibers.

View Article and Find Full Text PDF

In this study, we report the design, development and evaluation of a hollow drug delivery nanoplatform for cancer therapy and . This composite nanosystem was prepared by modifying hollow mesoporous silica nanoparticles (HMSNs) with transferrin (Tf) targeting moieties redox-liable linkage, and was capable of delivering therapeutic cargos (doxorubicin) specifically to the tumor site and subsequently releasing them in an on-demand manner. Moreover, the Tf corona could simultaneously reduce the inflammatory response after intravenous administration .

View Article and Find Full Text PDF

Probing the supramolecular chirality of assemblies and controlling their handedness are closely related to the origin of chirality at the supramolecular level and the development of smart materials with desired handedness. However, it remains unclear how achiral residues covalently bonded to chiral amino acids can function in the chirality inversion of supramolecular assemblies. Herein, we report macroscopic chirality and dynamic manipulation of chiroptical activity of hydrogels self-assembled from phenylalanine derivatives, together with the inversion of their handedness achieved solely by exchanging achiral substituents between oligo(ethylene glycol) and carboxylic acid groups.

View Article and Find Full Text PDF

Developing multifunctional hybrid nanosystems for controlled drug delivery is a challenging task. In this work, we prepared hierarchical core-shell nanoparticles (ZnO-DOX@ZIF-8) composed of mesoporous ZnO core and microporous ZIF-8 shell, in which the core serves as the drug storage reservoir for the loading of anticancer drug doxorubicin (DOX) and the shell could be used to prevent premature release of loaded drug at physiological environment. The mesoporous ZnO nanoparticles were first prepared, followed by DOX drug loading.

View Article and Find Full Text PDF

Silver nanoprisms (AgNPrs) exhibit localized surface plasmon resonance (LSPR) in the near infrared (NIR) region of the electromagnetic spectrum. LSPR-driven electric field enhancement around AgNPr edges has been investigated in various studies. A coating of dielectric materials such as silica on the surface of the AgNPrs is employed to extend the application of these nanoparticles under biocompatible conditions and to increase the thermal stability.

View Article and Find Full Text PDF

The integration of chemotherapy and photodynamic therapy (PDT) in a single delivery system is highly desirable for enhancing anticancer therapeutic efficacy. Herein, two cyclometalated Ir(III) complex-constructed micelles FIr-1 and FIr-2 were demonstrated for glutathione (GSH) activated targeted chemotherapy and PDT. The cyclometalated Ir(III) complexes were prepared by conjugating phosphorescent Ir(III) compounds with chemotherapeutic drug camptothecin (CPT) through GSH responsive disulfide bond linkages, and the Ir(III) complexes were then assembled with amphiphilic surfactant pluronic F127 via noncovalent encapsulation to afford micelles.

View Article and Find Full Text PDF

The construction of prodrugs has been a popular strategy to overcome the limitations of chemotherapeutic drugs. However, complicated synthesis procedures and laborious purification steps make the fabrication of amphiphilic prodrugs rather difficult. By harnessing the concept of host-guest interaction, we designed and prepared a supra-amphiphile consisting of a dendritic cyclodextrin host and an adamantane/naphthalimide-modified camptothecin guest through glutathione-responsive disulfide linkage.

View Article and Find Full Text PDF

Discriminative detection of glutathione (GSH) from cysteine/homocysteine (Cys/Hcy) is achieved through two emission channel analysis using a stable, highly sensitive, and selective near-infrared fluorescent probe that bears 7-nitrobenzo-2-oxa-1,3-diazole and aza-BODIPY units. The probe was successfully applied for simultaneous determination of GSH and Cys/Hcy in living cells.

View Article and Find Full Text PDF

Two porous covalent organic frameworks (COFs) with good biocompatibility were employed as drug nanocarriers, where three different drugs were loaded for subsequent drug release in vitro. The present work demonstrates that COFs are applicable in drug delivery for therapeutic applications.

View Article and Find Full Text PDF

In recent years, there has been a considerable research focus on integrating cancer cell imaging and therapeutic functions into single nanoscale platforms for better treatment of cancer. This task could often be achieved by incorporating multiple components into a hybrid nanosystem. In this minireview, we highlight different types of silica-based hybrid nanosystems and their recent applications as integrated multifunctional platforms for cancer imaging and treatment.

View Article and Find Full Text PDF