Publications by authors named "Soo Kyung Suh"

The use of many benzodiazepines is controlled worldwide due to their high likelihood of abuse and potential adverse effects. Flubromazepam-a designer benzodiazepine-is a long-acting gamma-aminobutyric acid subtype A receptor agonist. There is currently a lack of scientific evidence regarding the potential for flubromazepam dependence or other adverse effects.

View Article and Find Full Text PDF

Two synthetic tryptamines, namely [3-[2-(diethylamino)ethyl]-1H-indol-4-yl] acetate (4-AcO-DET) and 3-[2-[ethyl(methyl)amino]ethyl]-1H-indol-4-ol (4-HO-MET), are abused by individuals seeking recreational hallucinogens. These new psychoactive substances (NPSs) can cause serious health problems because their adverse effects are mostly unknown. In the present study, we evaluated the cardiotoxicity of 4-AcO-DET and 4-HO-MET using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, electrocardiography (ECG), and the human ether-a-go-go-related gene (hERG) assay.

View Article and Find Full Text PDF
Article Synopsis
  • * Seventy-six laboratories from various sectors around the world participated, submitting 103 reports using different analytical methods to examine glycan distributions.
  • * The study revealed significant diversity in results, with up to 48 glycan compositions identified by individual labs, highlighting the need for standardization in glycosylation analysis methods.
View Article and Find Full Text PDF

Desoxypipradrol (2-DPMP), a new psychoactive substance (NPS), acts as a norepinephrine-dopamine reuptake inhibitor (NDRI). NDRIs can be addictive due to their action mechanisms similar to cocaine and methamphetamine. However, there is a lack of scientific information regarding the exact dependency of 2-DPMP.

View Article and Find Full Text PDF

25INBOMe ("25-I", "N-Bomb"), one of new psychoactive substances (NPSs), is being abused for recreational purpose. However, the liability for abuse or dependence has not been systematically studied yet. The objective of the present study was to evaluate rewarding and reinforcing effects of 25INBOMe using conditioned place preference (CPP) and self-administration (SA) paradigms.

View Article and Find Full Text PDF

A major predictor of the efficacy of natural or synthetic cannabinoids is their binding affinity to the cannabinoid type I receptor (CB) in the central nervous system, as the main psychological effects of cannabinoids are achieved via binding to this receptor. Conventionally, receptor binding assays have been performed using isotopes, which are inconvenient owing to the effects of radioactivity. In the present study, the binding affinities of five cannabinoids for purified CB were measured using a surface plasmon resonance (SPR) technique as a putative non-isotopic receptor binding assay.

View Article and Find Full Text PDF

Two emerging psychoactive substances, 2-(2,5-dimethoxy-4-methylphenyl)-N-(2-methoxybenzyl)ethanamine (25D-NBOMe) and N-(2-methoxybenzyl)-2,5-dimethoxy-4-chlorophenethylamine (25C-NBOMe), are being abused, leading to fatal and non-fatal intoxications. However, most of their adverse effects have been reported anecdotally. In the present study, cardiotoxicity was evaluated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, rat electrocardiography (ECG), and human ether-a-go-go-related gene (hERG) assay.

View Article and Find Full Text PDF

The abuse of new psychoactive substances (NPS) is an emerging social problem. Methoxetamine, one of the NPS, was designed as an alternative to ketamine and it was considered an NPS candidate owing to its high addictive potential. However, cardiotoxicity of the phencyclidine analogue, methoxetamine, has not been extensively evaluated.

View Article and Find Full Text PDF

New psychoactive substances (NPSs), i.e., newly designed substances with chemical residues that are slightly different from those of known psychoactive substances, have been emerging since the late 2000s, and social problems related to the use of these substances are increasing globally.

View Article and Find Full Text PDF

Gene-editing technology is an emerging therapeutic modality for manipulating the eukaryotic genome by using target-sequence-specific engineered nucleases. Because of the exceptional advantages that gene-editing technology offers in facilitating the accurate correction of sequences in a genome, gene editing-based therapy is being aggressively developed as a next-generation therapeutic approach to treat a wide range of diseases. However, strategies for precise engineering and delivery of gene-editing nucleases, including zinc finger nucleases, transcription activator-like effector nuclease, and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated nuclease Cas9), present major obstacles to the development of gene-editing therapies, as with other gene-targeting therapeutics.

View Article and Find Full Text PDF

Chimeric antigen receptor-modified T cells (CAR-T) have emerged as a new modality for cancer immunotherapy due to their potent efficacy against terminal cancers. CAR-Ts are reported to exert higher efficacy than monoclonal antibodies and antibody-drug conjugates, and act via mechanisms distinct from T cell receptor-engineered T cells. These cells are constructed by transducing genes encoding fusion proteins of cancer antigen-recognizing single-chain Fv linked to intracellular signaling domains of T cell receptors.

View Article and Find Full Text PDF

The regulatory framework of biosimilar products in Korea is a 3-tiered system: 1) Pharmaceutical Affairs Act; 2) Notification of the regulation on review and authorization of biological products; 3) Guideline on evaluation of biosimilar products. A biosimilar product is regulated under the same regulation as biological products. The difference from new biological product is that biosimilar product requires full comparability data with reference product.

View Article and Find Full Text PDF

Increased oxidative stress with elevated levels of reactive oxygen/nitrogen species (ROS/RNS) plays an important role in the pathophysiology of many disease states. Increased ROS/RNS can modulate the cellular macromolecules of DNA, lipids, and proteins, negatively affecting their normal functions. Numerous reports have described the properties and implications of oxidized DNA and lipids.

View Article and Find Full Text PDF

Objectives: To investigate the patterns of unintentional home injuries in Korea.

Methods: The study population was 12,382,088 people who utilized National Health Insurance services due to injuries (main diagnosis codes S00 to T28) during 2006. Stratified samples(n=459,501) were randomly selected by sex, age group and severity of injury.

View Article and Find Full Text PDF

Objectives: This study was performed to examine medical care utilization of psychiatric patients and to explore patients' characteristics associated with extended hospitalization.

Methods: Data were extracted from information of Korean Health Insurance Review and Assessment Service. All data associated with admission and outpatient clinic visit were analysed by patient characteristics.

View Article and Find Full Text PDF

Although antiviral assays have been the most widely available biological assays for interferons (IFNs), they are less sensitive and provide considerable interassay variation. In this study, we demonstrate a new reporter cell line, which is based on HeLa cells transfected with a plasmid containing a human Mx2 promoter driving a luciferase (Luc) cDNA. To characterize the specific gene expression profiles induced by interferon alpha, we analyzed the microarray results of interferon response gene expression induced by IFN-alpha2a or IFN-alpha2b treatment with HeLa cells.

View Article and Find Full Text PDF

Heavy alcohol consumption can damage various cells and organs partly through production of reactive oxygen species (ROS) and mitochondrial dysfunction. Treatment with antioxidants can significantly reduce the degree of damage. Despite well established roles of ROS in alcohol-induced cell injury, the proteins that are selectively oxidized by ROS are poorly characterized.

View Article and Find Full Text PDF

CKD-602 (7-[2-(N-isopropylamino)ethyl]-(20S)-camptothecin) is a recently-developed synthetic camptothecin analogue and currently under clinical development by Chong Kun Dang Pharm (Seoul, Korea). CKD-602 showed potent topoisomerase inhibitory activity in vitro and broad antitumor activity against various human tumor cells in vitro and in vivo in animal models. This study describes the pharmacodynamics of the immediate and delayed cytotoxicity induced by CKD-602 in a human colorectal adenocarcinoma cell line, HT-29, and its intracellular drug accumulation by HPLC.

View Article and Find Full Text PDF