The intracellular delivery of functional proteins in their native forms into cells is a theme of paramount importance in research owing to their diverse biological applications. Porous inorganic nanoparticles are emerging as efficient nanocarriers for the delivery of small molecules and drugs. To expand the range of cargos from small molecules to large native functional proteins, cubic mesoporous silica nanoparticles (cMSNs) with a Pm3n pore symmetry with an average particle dimension of 180 nm were prepared.
View Article and Find Full Text PDFBMC Biotechnol
February 2015
Background: Protein transduction is safer than viral vector-mediated transduction for the delivery of a therapeutic protein into a cell. Fusion proteins with an arginine-rich cell-penetrating peptide have been produced in E. coli, but the low solubility of the fusion protein expressed in E.
View Article and Find Full Text PDF