Publications by authors named "Soo Hyuk Kim"

Elastic fibers are the main components of the extracellular matrix of the large arterial wall. Elastic fiber remodeling is an intricate process of synthesis and degradation of the core elastin protein and microfibrils accompanied by the assembly and disassembly of accessory proteins. Age-related morphological, structural, and functional proinflammatory remodeling within the elastic fiber has a profound effect upon the integrity, elasticity, calcification, amyloidosis, and stiffness of the large arterial wall.

View Article and Find Full Text PDF

Background Aging exponentially increases the incidence of morbidity and mortality of quintessential cardiovascular disease mainly due to arterial proinflammatory shifts at the molecular, cellular, and tissue levels within the arterial wall. Calorie restriction ( CR ) in rats improves arterial function and extends both health span and life span. How CR affects the proinflammatory landscape of molecular, cellular, and tissue phenotypic shifts within the arterial wall in rats, however, remains to be elucidated.

View Article and Find Full Text PDF

The glycosylated protein vasorin physically interacts with the transforming growth factor-beta1 (TGF-β1) and functionally attenuates its fibrogenic signaling in the vascular smooth muscle cells (VSMCs) of the arterial wall. Angiotensin II (Ang II) amplifies TGF-β1 activation in the VSMCs of the arterial wall with aging. In this study, we hypothesized that a reduced expression of the protein vasorin plays a contributory role in magnifying Ang II-associated fibrogenic signaling in the VSMCs of the arterial wall with aging.

View Article and Find Full Text PDF

Background: Effects of peroxisome proliferator-activated receptor alpha (PPARα) agonists on cardiovascular outcome have been controversial. Although these agents primarily affect lipoprotein metabolism, their pleiotropic anti-inflammatory effect is one of the potential anti-atherosclerotic mechanisms. This study aimed to evaluate the effect of fenofibrate and gemfibrozil on inflammation in macrophages and reveal pathways these agents may affect.

View Article and Find Full Text PDF

C-reactive protein (CRP) is one of the most important biomarkers for arteriosclerosis and cardiovascular disease. Recent studies have shown that CRP affects cell cycle and inflammatory process in cardiac myocytes. Survivin is also involved in cardiac myocytes replication and apoptosis.

View Article and Find Full Text PDF

Background: The cross talk between RAGE and angiotensin II (AngII) activation may be important in the development of atherosclerosis. Soluble RAGE (sRAGE), a truncated soluble form of the receptor, acts as a decoy and prevents the inflammatory response mediated by RAGE activation. In this study, we sought to determine the effect of sRAGE in inhibiting AngII-induced atherosclerosis in apolipoprotein E knockout mice (Apo E KO).

View Article and Find Full Text PDF

Background And Objectives: Apoptosis has been known to be an important mechanism of doxorubicin-induced cardiotoxicity. Survivin, which belongs to the inhibitor of apoptosis protein family, is associated with apoptosis and alteration of the cardiac myocyte molecular pathways. Therefore, we investigated the anti-apoptotic effect and cellular mechanisms of survivin using a protein delivery system in a doxorubicin-induced cardiac myocyte injury model.

View Article and Find Full Text PDF

Saturated fatty acids are known to activate macrophages and induce vascular inflammation. Although cytokines from activated macrophage influence other vascular cells, the influence of saturated fatty acids on the paracrine effect of macrophages is not fully understood yet. Here we examined the impact of palmitate on the effect of macrophages on vascular smooth muscle cells (SMCs) and their mediators.

View Article and Find Full Text PDF

Transcriptional factor nuclear factor-kappaB (NF-κB) plays a crucial role in human breast cancer cell invasion and metastasis. The carboxyl terminus of Hsc70-interacting protein (CHIP) is a U-box-type ubiquitin ligase that induces ubiquitination and proteasomal degradation of its substrate proteins. In this study, we investigated the role of CHIP in the NF-κB pathway in the invasion of MDA-MB-231 cells, a highly aggressive breast cancer cell line.

View Article and Find Full Text PDF

C-reactive protein (CRP) is one of the most important biomarker for cardiovascular diseases. Recent studies have shown that CRP affects cell survival, differentiation and apoptosis. However, the effect of CRP on the cell cycle has not been studied yet.

View Article and Find Full Text PDF

Cell-penetrating peptides (CPPs), including TAT-CPP, have been used to deliver exogenous proteins into living cells. Although a number of proteins fused to TAT-CPP can be delivered into various cells, little is known about the proteolytic cleavage of TAT-fusion proteins in cells. In this study, we demonstrate that a small heat shock protein (sHSP), alphaB-crystallin (αB-crystallin), delivered by TAT-CPP is susceptible to proteolytic cleavage by matrix metalloproteinase-1 (MMP-1) in cardiac myoblast H9c2 cells.

View Article and Find Full Text PDF

Gene transfer of basic fibroblast growth factor (bFGF) has been shown to induce significant endothelial migration and angiogenesis in ischemic disease models. Here, we investigate what factors are secreted from skeletal muscle cells (SkMCs) transfected with bFGF gene and whether they participate in endothelial cell migration. We constructed replication-defective adenovirus vectors containing the human bFGF gene (Ad/bFGF) or a control LacZ gene (Ad/LacZ) and obtained conditioned media, bFGF-CM and LacZ-CM, from SkMCs infected by Ad/bFGF or Ad/LacZ, respectively.

View Article and Find Full Text PDF