In multicellular organisms, cell fates are specified through differential regulation of transcription. Epidermal cell fates in the Arabidopsis thaliana root are precisely specified by several transcription factors, with the GLABRA2 (GL2) homeodomain protein acting at the farthest downstream in this process. To better understand the regulation of GL2 expression, we ectopically expressed WEREWOLF (WER) and ENHANCER OF GLABRA3 (EGL3) in various tissues and examined GL2 expression.
View Article and Find Full Text PDFWe examined the effects of ethylene on the expression of Arabidopsis expansins (AtEXPs). Among the AtEXPs tested, transcription of the AtEXPA5 gene was reduced most by exogenous ethylene. 2-Aminoethoxyvinylglycine, an ethylene biosynthesis inhibitor, increased AtEXPA5 transcription.
View Article and Find Full Text PDFThe effects of ascorbic acid (AA) and dehydroascorbic acid (DHA), one of products of the disproportionation of monodehydroascorbate (MDHA) by AA oxidase (AAO, EC 1.10.3.
View Article and Find Full Text PDFTo elucidate the spatial and temporal roles of EXPANSIN A5 (AtEXPA5) in growth and development of Arabidopsis thaliana, phenotypic alterations in loss-of-function mutants were observed. Seedlings of the null mutant, expA5-1, had shorter roots and hypocotyls than those of wild-type plants under both light and dark conditions. Compared to wild-type plants, the mutants had smaller rosette leaves.
View Article and Find Full Text PDFThe plasma membrane-localized BRASSINOSTEROID-INSENSITIVE1 (BRI1) and BRI1-ASSOCIATED KINASE1 (BAK1) are a well-known receptor pair involved in brassinosteroids (BR) signaling in Arabidposis. The formation of a receptor complex in response to BRs and the subsequent activation of cytoplasmic domain kinase activity share mechanistic characteristics with animal receptor kinases. Here, we demonstrate that BRI1 and BAK1 are BR-dependently phosphorylated, and that phosphorylated forms of the two proteins persist for different lengths of time.
View Article and Find Full Text PDFExogenously applied brassinolide (BL) increased both gravitropic curvature and length of primary roots of Arabidopsis at low concentration (10(-10) M), whereas at higher concentration, BL further increased gravitropic curvature while it inhibited primary root growth. BRI1-GFP plants possessing a high steady-state expression level of a brassinosteroid (BR) receptor kinase rendered the plant's responses to gravity and root growth more sensitive, while BR-insensitive mutants, bri1-301 and bak1, delayed root growth and reduced their response to the gravitropic stimulus. The stimulatory effect of BL on the root gravitropic curvature was also enhanced in auxin transport mutants, aux1-7 and pin2, relative to wild-type plants, and increasing concentration of auxin attenuated BL-induced root sensitivity to gravity.
View Article and Find Full Text PDFIn vitro shoot cultures of Hypericum perforatum derived from wild populations grown in Armenia have a wide variation of hypericin and pseudohypericin metabolite content. We found that a germ line denoted as HP3 produces six times more hypericin and fourteen times more pseudohypericin than a second line labeled HP1. We undertook a structural comparison of the two lines (HP1 and HP3) in order to see if there are any anatomical or morphological differences that could explain the differences in production of these economically important metabolites.
View Article and Find Full Text PDFThis study was conducted to unravel a mechanism for the gravitropic curvature response in oat (Avena sativa) shoot pulvini. For this purpose, we examined the downward movement of starch-filled chloroplast gravisensors, differential changes in inositol 1,4,5-trisphosphate (IP(3)) levels, transport of indole-3-acetic acid (IAA) and gravitropic curvature. Upon gravistimulation, the ratio for IAA levels in lower halves versus those in upper halves (L/U) increased from 1.
View Article and Find Full Text PDFA mini-hydroponic growing system was employed for seedlings of kudzu vine (Pueraria montana) and contents of isoflavones (daidzein, genistein, daidzin, genistin, and puerarin) from shoot and root parts of seedlings were analyzed quantitatively. In addition, exogenous cork pieces, polymeric adsorbent, XAD-4, and universal elicitor, methyl jasmonate (MeJA), were used to regulate the production of these isoflavones. It was shown that cork pieces up-regulate the production of daidzein and genistein up to seven- and eight-fold greater than the levels obtained for control roots.
View Article and Find Full Text PDFThe objective of the present study was to determine whether concentrations of different isoflavones (puerarin, genistein, genistin, daidzein, and daidzin) in shoots and roots of five selected soybean genotypes would respond the same or differently to red (650 nm peak transmittance) and far-red (750 nm peak transmittance) light treatments given under controlled environments. Levels of isoflavones (mg g(-1) dry weight biomass) present in seeds, control roots, and shoots and 10 day light-treated seedlings (light, dark, red, and far-red wavelengths) of soybean (Glycine max) were determined by high-performance liquid chromatography analysis in comparison with known isoflavone standards. Seeds of the five soybean genotypes studied consistently stored most of their isoflavones as glucosyl conjugates (e.
View Article and Find Full Text PDFThe conversion of castasterone (CS) to brassinolide (BL), a Baeyer-Villiger oxidation, represents the final and rate-limiting step in the biosynthesis of BL in plants. Heterologously expressed Arabidopsis thaliana CYP85A2 in yeast mediated the conversion of CS to BL as well as the C-6 oxidation of brassinosteroids (BRs). This indicated that CYP85A2 is a bifunctional enzyme that possesses BR C-6 oxidase and BL synthase activity.
View Article and Find Full Text PDFAn auxin-inducible protein kinase, VrCRK1, was isolated by a differential reverse transcriptase-polymerase chain reaction, using mRNAs extracted from auxin-treated mungbean hypocotyls. VrCRK1 exhibits high homology with plant CDPKs over catalytic domains, however, it does not have any calcium-binding EF-hand which is typically shown in plant CDPKs. Auxin treatment increased the expression level of VrCRK1.
View Article and Find Full Text PDFEndogenous brassinosteroids (BRs) in tomato (Lycopersicon esculentum) seedlings are known to be composed of C27- and C28-BRs. The biosynthetic pathways of C27-BRs were examined using a cell-free enzyme solution prepared from tomato seedlings that yielded the biosynthetic sequences cholesterol --> cholestanol and 6-deoxo-28-norteasterone <--> 6-deoxo-28-nor-3-dehydroteasterone <--> 6-deoxo-28-nortyphasterol --> 6-deoxo-28-norcastasterone --> 28-norcastasterone (28-norCS). Arabidopsis CYP85A1 that was heterologously expressed in yeast mediated the conversion of 6-deoxo-28-norCS to 28-norCS.
View Article and Find Full Text PDFIn this investigation, two species of Crataegus (hawthorn) were chosen because their polyphenolic constituents have recently received greater attention for the treatment of patients with severe heart disease. One-year-old plants of hawthorn (Crataegus laevigata and C. monogyna) were subjected to water-deficit (continuous water deprivation), cold (4 degrees C), flooding (immersion of roots of plants in water) or herbivory (leaf removal) stress treatments (each of 10 days duration) in order to assess their effects on levels of polyphenolics, namely (-)-epicatechin, catechin, chlorogenic acid, vitexin, vitexin-2"-O-rhamnoside, acetylvitexin-2"-O-rhamnoside, hyperoside, quercetin, and rutin in the leaves.
View Article and Find Full Text PDFThe last reaction in the biosynthesis of brassinolide has been examined enzymatically. A microsomal enzyme preparation from cultured cells of Phaseolus vulgaris catalyzed a conversion from castasterone to brassinolide, indicating that castasterone 6-oxidase (brassinolide synthase) is membrane associated. This enzyme preparation also catalyzed the conversions of 6-deoxocastasterone and typhasterol to castasterone which have been reported to be catalyzed by cytochrome P450s, CYP85A1 of tomato and CYP92A6 of pea, respectively.
View Article and Find Full Text PDFCrataegus laevigata and Crataegus monogyna (hawthorn) were subjected to drought and cold stress treatments, and polyphenolic extracts from control and stress-treated plants were assayed for antioxidant capacities using a modified version of the Total Antioxidant Status Assay (Randox, San Francisco, CA). In addition, these plants were analyzed for levels of flavanol-type substance [(-)-epicatechin] and flavonoid (vitexin 2' '-O-rhamnoside, acetylvitexin 2' '-O-rhamnoside, and hyperoside) constituents that are important metabolites in hawthorn herbal preparations used to treat patients with heart disease. Drought and cold stress treatments caused increases in levels of (-)-epicatechin and hyperoside in both Crataegus species.
View Article and Find Full Text PDFThe present work indicates that phosphorylation of a 50 kDa soluble protein is involved in the gravitropic response in graviresponsive pulvini of oat (Avena sativa) stems. This 50 kDa protein shows a differential pattern of phosphorylation between lower and upper halves of pulvini both in vivo and in vitro. The differential phosphorylation of this protein is detected only when stem segments are gravistimulated for short and long time periods.
View Article and Find Full Text PDFThe effects of ABA and putrescine, a polyamine, on cold-induced membrane leakage were investigated using primary leaves of wild-type and an ABA-deficient mutant, flacca, of tomato (Lycopersicon esculentum Mill.). The amount of chilling-induced electrolyte leakage from flacca leaves was much higher than that from the wild-type leaves.
View Article and Find Full Text PDF