Distributed feedback laser diodes (DFBs) serve as simple, compact, narrow-band light sources supporting a wide range of photonic applications. Typical linewidths are on the order of sub-MHz for free-running III-V DFBs at infrared wavelengths, but linewidths of short-wavelength GaN-based DFBs are considerably worse or unreported. Here, we present a free-running InGaN DFB operating at 443 nm with an intrinsic linewidth of 685 kHz at a continuous wave output power of 40 mW.
View Article and Find Full Text PDFIn this contribution, we demonstrate how an optical frequency comb can be used to enhance the functionality of an integrated photonic biosensor platform. We show that if an optical frequency comb is used to sample the spectral response of a Mach-Zehnder interferometer and if the line spacing is arranged to sample the periodic response at 120° intervals, then it is possible to combine these samples into a single measurement of the interferometer phase. This phase measurement approach is accurate, independent of the bias of the interferometer and robust against intensity fluctuations that are common to each of the comb lines.
View Article and Find Full Text PDFJ Biochem Biophys Methods
December 2002
The enantiomeric resolution of a racemic novel cannabinoid receptor ligand conformationally restricted at the southern aliphatic chain was accomplished using a ChiralPak AD column. Both enantiomers were tested for their competitive binding to the rat brain CB1, mouse spleen CB2 and human CB2 receptors. The levorotatory isomer showed exceptionally high affinity for the CB1 receptor with a seven-fold selectivity over CB2.
View Article and Find Full Text PDFThe understanding of the pharmacology surrounding the cannabinergic system has seen many advances since the discovery of the CB1 receptor in the mammalian brain and the CB2 receptor in the periphery. Among these advances is the discovery of the endogenous ligands arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol amide (2-AG), which are selective agonists for the CB1 and CB2 receptors, respectively. These endogenous neuromodulators involved in the cannabinergic system are thought to be produced on demand and are metabolized by the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAG lipase).
View Article and Find Full Text PDF