With the post-antibiotic era rapidly approaching, many have turned their attention to developing new treatments, often by structural modification of existing antibiotics. Polymyxins, a family of lipopeptide antibiotics that are used as a last line of defense in the clinic, have recently developed resistance and exhibit significant nephrotoxicity issues. Using thiol-ene chemistry, the facile preparation of six unique S-lipidated building blocks was demonstrated and used to generate lipopeptide mimetics upon incorporation into solid-phase peptide synthesis (SPPS).
View Article and Find Full Text PDFIn the past decades, the regulation of pro-inflammatory cytokine production, including interleukin-8 (IL-8), has been the goal of many targeted therapeutic interventions for Necrotising enterocolitis (NEC), a gastrointestinal disease commonly associated with a very low birth weight in preterm infants. In this study, the ability to regulate the production of IL-8 of the water-soluble non-starch polysaccharide (WS-NSP) from taro corm (Tc-WS-NSP) extracted using a conventional (CE) or improved conventional (ICE) extraction method, of the probiotics , , and , and their synbiotic mixtures were evaluated. The TNF-α stimulated HT-29 cells were incubated with undigested or digested Tc-WS-NSPs (CE or ICE), probiotics, and their synbiotic mixtures with , an NEC-positive-associated pathogen.
View Article and Find Full Text PDFAntimicrobial drug resistance is a looming health crisis facing us in the modern era, and new drugs are urgently needed to combat this growing problem. Synthetic mimics of antimicrobial peptides have recently emerged as a promising class of compounds for the treatment of persistent microbial infections. In the current study, we investigate five cyclic -alkylated amphiphilic 2,5-diketopiperazines against 15 different strains of bacteria and fungi, including drug-resistant clinical isolates.
View Article and Find Full Text PDFNanoparticle drug delivery systems have emerged as a promising strategy for overcoming limitations of antimicrobial drugs such as stability, bioavailability, and insufficient exposure to the hard-to-reach bacterial drug targets. Although size is a vital colloidal feature of nanoparticles that governs biological interactions, the absence of well-defined size control technology has hampered the investigation of optimal nanoparticle size for targeting bacterial cells. Previously, we identified a lead antichlamydial compound JO146 against the high temperature requirement A (HtrA) protease, a promising antibacterial target involved in protein quality control and virulence.
View Article and Find Full Text PDFA series of C-2 derivatized 8-sulfonamidoquinolines were evaluated for their antibacterial activity against the common mastitis causative pathogens Streptococcus uberis, Staphylococcus aureus and Escherichia coli, both in the presence and absence of supplementary zinc (50 µM ZnSO). The vast majority of compounds tested were demonstrated to be significantly more active against S. uberis when in the presence of supplementary zinc (MICs as low as 0.
View Article and Find Full Text PDFPolyhydroxylated naphthoquinones (PHNQs), known as spinochromes that can be extracted from sea urchins, are bioactive compounds reported to have medicinal properties and antioxidant activity. The MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability assay showed that pure echinochrome A exhibited a cytotoxic effect on Saos-2 cells in a dose-dependent manner within the test concentration range (15.625-65.
View Article and Find Full Text PDFA series of substituted sulfonamide bioisosteres of 8-hydroxyquinoline were evaluated for their antibacterial activity against the common mastitis causative pathogens Streptococcus uberis, Staphylococcus aureus and Escherichia coli, both in the presence and absence of supplementary zinc. Compounds 9a-e, 10a-c, 11a-e, 12 and 13 were demonstrated to have MICs of 0.0625 µg/mL against S.
View Article and Find Full Text PDFThis study investigated the bioactivities of polyhydroxyl-1,4-naphthoquinone (PHNQ) extracts from Evechinus chloroticus shell waste. PHNQs were extracted from E. chloroticus shells and spines using different solvents and the crude extracts were fractionated by HPLC.
View Article and Find Full Text PDFBackground: Cytokines, chemokines, C-reactive proteins (CRP) and ferritin are known inflammatory markers. However, cytokines such as interleukin (IL-1β), (IL-6) and tumour necrosis factor (TNF-α) have been reported to interfere with both the bone resorption and bone formation processes. Similarly, immune cell cytokines are known to contribute to inflammation of the adipose tissue especially with obesity.
View Article and Find Full Text PDFDemand for skin replacements is rapidly increasing as burn and full-thickness wounds are difficult to repair due to the low regeneration capability of innate tissues, as well as the physical drawbacks associated with currently available substitutes. To address this need, an emerging 3D printing technique, melt-electrowriting (MEW) was used to create novel bioactive scaffolds to promote skin regeneration. Polycaprolactone (PCL), a bioresorbable and biocompatible, synthetic polymer with Food and Drug Administration approval for use in the human body was selected as scaffold material due to its mechanical stability, flexibility, and superior melt processing properties.
View Article and Find Full Text PDFThe fabrication of porous 3D printed chitosan (CH) scaffolds for skin tissue regeneration and their behavior in terms of biocompatibility, cytocompatibility and toxicity toward human fibroblasts (Nhdf) and keratinocytes (HaCaT), are presented and discussed. 3D cell cultures achieved after 20 and 35 days of incubation showed significant in vitro qualitative and quantitative cell growth as measured by neutral red staining and MTT assays and confirmed by scanning electron microphotographs. The best cell growth was obtained after 35 days on 3D scaffolds when the Nhdf and HaCaT cells, seeded together, filled the pores in the scaffolds.
View Article and Find Full Text PDFProtease preparations from plant (papain and bromelain) and fungal (FP400 and FPII) sources were used to hydrolyze the red blood cell fractions (RBCFs) separated from deer, sheep, pig, and cattle abattoir-sourced blood. After 1, 2, 4 and 24h of hydrolysis, the antioxidant and antibacterial activities of the peptide hydrolysates obtained were investigated. The increase in trichloroacetic acid-soluble peptides over the hydrolysis period was examined using the o-phthaldialdehyde (OPA) assay and the hydrolysis profiles were illustrated using SDS-PAGE.
View Article and Find Full Text PDFIn developing a chitosan/dextran-based (CD) hydrogel as an adhesion prevention postsurgical aid, the in vivo biodegradation rate, biodistribution, and inflammatory response are important parameters to the biomedical device design. Herein, for the first time, a CD hydrogel was prepared by mixing aqueous solutions of a near infrared (NIR) labeled succinylated chitosan (SC) and tritiated [(3) H] oxidized dextran (DA). The biodegradation and biodistribution of the NIR/[(3) H]-CD hydrogel was tracked noninvasively using NIR fluorescence imaging, and by liquid scintillation counting (LSC) of organs/tissues after subcutaneous injection in BALB/c mice.
View Article and Find Full Text PDFIn this study, a rhamnose-binding lectin from the roe of chinook salmon (Oncorhynchus tshawytscha) was purified and characterized, and its biological activities were examined in several model systems. Chinook salmon roe lectin had a molecular mass of 30 kDa and agglutinated rabbit and bovine erythrocytes. The hemagglutination activity of the lectin was not affected by metal ions.
View Article and Find Full Text PDF