Publications by authors named "Sonya Legg"

Gender equity, providing for full participation of people of all genders in the oceanographic workforce, is an important goal for the continued success of the oceanographic enterprise. Here, we describe historical obstructions to gender equity; assess recent progress and the current status of gender equity in oceanography by examining quantitative measures of participation, achievement, and recognition; and review activities to improve gender equity. We find that women receive approximately half the oceanography PhDs in many parts of the world and are increasing in parity in earlier levels of academic employment.

View Article and Find Full Text PDF
Article Synopsis
  • The global ocean's overturning circulation is significantly influenced by deep-ocean mixing, turning cold, dense waters into warm, shallower ones.
  • The mixing effectiveness is determined by turbulence intensity near underwater features and the exchange rate of mixed boundary waters with the deeper ocean.
  • Research in the Southern Ocean reveals a new mixing mechanism linked to deep-water flows along steep topographies, emphasizing the need for this process to be included in ocean circulation models.
View Article and Find Full Text PDF

Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean and, consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Away from ocean boundaries, the spatio-temporal patterns of mixing are largely driven by the geography of generation, propagation and dissipation of internal waves, which supply much of the power for turbulent mixing.

View Article and Find Full Text PDF

Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects.

View Article and Find Full Text PDF