The Dictyostelium discoideum genome uncovers seven cyclic nucleotide PDEs (phosphodiesterases), of which six have been characterized previously and the seventh is characterized in the present paper. Three enzymes belong to the ubiquitous class I PDEs, common in all eukaryotes, whereas four enzymes belong to the rare class II PDEs that are present in bacteria and lower eukaryotes. Since all D.
View Article and Find Full Text PDFDictyostelium discoideum cells possess multiple cyclic nucleotide phosphodiesterases that belong either to class I enzymes that are present in all eukaryotes or to the rare beta-lactamase class II. We describe here the identification and characterization of DdPDE4, the third class I enzyme of Dictyostelium. The deduced amino acid sequence predicts that DdPDE4 has a leader sequence, two transmembrane segments, and an extracellular catalytic domain that exhibits a high degree of homology with human cAMP-specific PDE8.
View Article and Find Full Text PDFRecently, we recognized two genes, gbpA and gbpB, encoding putative cGMP-binding proteins with a Zn(2+)-hydrolase domain and two cyclic nucleotide binding domains. The Zn(2+)-hydrolase domains belong to the superfamily of beta-lactamases, also harboring a small family of class II phosphodiesterases from bacteria and lower eukaryotes. Gene inactivation and overexpression studies demonstrate that gbpA encodes the cGMP-stimulated cGMP-phosphodiesterase that was characterized biochemically previously and was shown to be involved in chemotaxis.
View Article and Find Full Text PDF