The evolutionary paths taken by each sex within a given species sometimes diverge, resulting in behavioral differences. Given their distinct needs, the mechanism by which each sex learns from a shared experience is still an open question. Here, we reveal sexual dimorphism in learning: C.
View Article and Find Full Text PDFSex-specific traits and behaviors emerge during development by the acquisition of unique properties in the nervous system of each sex. However, the genetic events responsible for introducing these sex-specific features remain poorly understood. In this study, we create a comprehensive gene expression atlas of pure populations of hermaphrodites and males of the nematode Caenorhabditis elegans across development.
View Article and Find Full Text PDFThe capacity of animals to respond to hazardous stimuli in their surroundings is crucial for their survival. In mammals, complex evaluations of the environment require large numbers and different subtypes of neurons. The nematode C.
View Article and Find Full Text PDFDimorphic traits, shaped by both natural and sexual selection, ensure optimal fitness and survival of the organism. This includes neuronal circuits that are largely affected by different experiences and environmental conditions. Recent evidence suggests that sexual dimorphism of neuronal circuits extends to different levels such as neuronal activity, connectivity and molecular topography that manifest in response to various experiences, including chemical exposures, starvation and stress.
View Article and Find Full Text PDFBackground: Neurodegenerative diseases comprise a group of disorders for which no treatment is available till date. Stem cell based therapy offers great hope and promise. However, stem cell transplantation is associated with certain disadvantages like poor targeted migration, engraftment and survival of the transplanted cells.
View Article and Find Full Text PDF